engine.py 121 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.misc import MetricLogger, SmoothedValue
  11. from utils.vis_tools import vis_data
  12. # ----------------- Evaluator Components -----------------
  13. from evaluator.build import build_evluator
  14. # ----------------- Optimizer & LrScheduler Components -----------------
  15. from utils.solver.optimizer import build_yolo_optimizer, build_rtdetr_optimizer
  16. from utils.solver.lr_scheduler import build_lr_scheduler
  17. # ----------------- Dataset Components -----------------
  18. from dataset.build import build_dataset, build_transform
  19. # ----------------------- Det trainers -----------------------
  20. ## YOLOv8 Trainer
  21. class Yolov8Trainer(object):
  22. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  23. # ------------------- basic parameters -------------------
  24. self.args = args
  25. self.epoch = 0
  26. self.best_map = -1.
  27. self.device = device
  28. self.criterion = criterion
  29. self.world_size = world_size
  30. self.heavy_eval = False
  31. self.last_opt_step = 0
  32. self.clip_grad = 10
  33. # weak augmentatino stage
  34. self.second_stage = False
  35. self.third_stage = False
  36. self.second_stage_epoch = args.no_aug_epoch
  37. self.third_stage_epoch = args.no_aug_epoch // 2
  38. # path to save model
  39. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  40. os.makedirs(self.path_to_save, exist_ok=True)
  41. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  42. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  43. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  44. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  45. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  46. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  47. self.data_cfg = data_cfg
  48. self.model_cfg = model_cfg
  49. self.trans_cfg = trans_cfg
  50. # ---------------------------- Build Transform ----------------------------
  51. self.train_transform, self.trans_cfg = build_transform(
  52. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  53. self.val_transform, _ = build_transform(
  54. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  55. # ---------------------------- Build Dataset & Dataloader ----------------------------
  56. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  57. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  58. # ---------------------------- Build Evaluator ----------------------------
  59. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  60. # ---------------------------- Build Grad. Scaler ----------------------------
  61. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  62. # ---------------------------- Build Optimizer ----------------------------
  63. accumulate = max(1, round(64 / self.args.batch_size))
  64. print('Grad Accumulate: {}'.format(accumulate))
  65. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  66. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  67. # ---------------------------- Build LR Scheduler ----------------------------
  68. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  69. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  70. if self.args.resume and self.args.resume != 'None':
  71. self.lr_scheduler.step()
  72. # ---------------------------- Build Model-EMA ----------------------------
  73. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  74. print('Build ModelEMA ...')
  75. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  76. else:
  77. self.model_ema = None
  78. def train(self, model):
  79. for epoch in range(self.start_epoch, self.args.max_epoch):
  80. if self.args.distributed:
  81. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  82. # check second stage
  83. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  84. self.check_second_stage()
  85. # save model of the last mosaic epoch
  86. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  87. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  88. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  89. torch.save({'model': model.state_dict(),
  90. 'mAP': round(self.evaluator.map*100, 1),
  91. 'optimizer': self.optimizer.state_dict(),
  92. 'epoch': self.epoch,
  93. 'args': self.args},
  94. checkpoint_path)
  95. # check third stage
  96. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  97. self.check_third_stage()
  98. # save model of the last mosaic epoch
  99. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  100. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  101. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  102. torch.save({'model': model.state_dict(),
  103. 'mAP': round(self.evaluator.map*100, 1),
  104. 'optimizer': self.optimizer.state_dict(),
  105. 'epoch': self.epoch,
  106. 'args': self.args},
  107. checkpoint_path)
  108. # train one epoch
  109. self.epoch = epoch
  110. self.train_one_epoch(model)
  111. # eval one epoch
  112. if self.heavy_eval:
  113. model_eval = model.module if self.args.distributed else model
  114. self.eval(model_eval)
  115. else:
  116. model_eval = model.module if self.args.distributed else model
  117. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  118. self.eval(model_eval)
  119. if self.args.debug:
  120. print("For debug mode, we only train 1 epoch")
  121. break
  122. def eval(self, model):
  123. # chech model
  124. model_eval = model if self.model_ema is None else self.model_ema.ema
  125. if distributed_utils.is_main_process():
  126. # check evaluator
  127. if self.evaluator is None:
  128. print('No evaluator ... save model and go on training.')
  129. print('Saving state, epoch: {}'.format(self.epoch))
  130. weight_name = '{}_no_eval.pth'.format(self.args.model)
  131. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  132. torch.save({'model': model_eval.state_dict(),
  133. 'mAP': -1.,
  134. 'optimizer': self.optimizer.state_dict(),
  135. 'epoch': self.epoch,
  136. 'args': self.args},
  137. checkpoint_path)
  138. else:
  139. print('eval ...')
  140. # set eval mode
  141. model_eval.trainable = False
  142. model_eval.eval()
  143. # evaluate
  144. with torch.no_grad():
  145. self.evaluator.evaluate(model_eval)
  146. # save model
  147. cur_map = self.evaluator.map
  148. if cur_map > self.best_map:
  149. # update best-map
  150. self.best_map = cur_map
  151. # save model
  152. print('Saving state, epoch:', self.epoch)
  153. weight_name = '{}_best.pth'.format(self.args.model)
  154. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  155. torch.save({'model': model_eval.state_dict(),
  156. 'mAP': round(self.best_map*100, 1),
  157. 'optimizer': self.optimizer.state_dict(),
  158. 'epoch': self.epoch,
  159. 'args': self.args},
  160. checkpoint_path)
  161. # set train mode.
  162. model_eval.trainable = True
  163. model_eval.train()
  164. if self.args.distributed:
  165. # wait for all processes to synchronize
  166. dist.barrier()
  167. def train_one_epoch(self, model):
  168. # basic parameters
  169. epoch_size = len(self.train_loader)
  170. img_size = self.args.img_size
  171. t0 = time.time()
  172. nw = epoch_size * self.args.wp_epoch
  173. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  174. # train one epoch
  175. for iter_i, (images, targets) in enumerate(self.train_loader):
  176. ni = iter_i + self.epoch * epoch_size
  177. # Warmup
  178. if ni <= nw:
  179. xi = [0, nw] # x interp
  180. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  181. for j, x in enumerate(self.optimizer.param_groups):
  182. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  183. x['lr'] = np.interp(
  184. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  185. if 'momentum' in x:
  186. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  187. # to device
  188. images = images.to(self.device, non_blocking=True).float()
  189. # Multi scale
  190. if self.args.multi_scale:
  191. images, targets, img_size = self.rescale_image_targets(
  192. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  193. else:
  194. targets = self.refine_targets(targets, self.args.min_box_size)
  195. # visualize train targets
  196. if self.args.vis_tgt:
  197. vis_data(images*255, targets)
  198. # inference
  199. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  200. outputs = model(images)
  201. # loss
  202. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  203. losses = loss_dict['losses']
  204. losses *= images.shape[0] # loss * bs
  205. # reduce
  206. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  207. # gradient averaged between devices in DDP mode
  208. losses *= distributed_utils.get_world_size()
  209. # backward
  210. self.scaler.scale(losses).backward()
  211. # Optimize
  212. if ni - self.last_opt_step >= accumulate:
  213. if self.clip_grad > 0:
  214. # unscale gradients
  215. self.scaler.unscale_(self.optimizer)
  216. # clip gradients
  217. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  218. # optimizer.step
  219. self.scaler.step(self.optimizer)
  220. self.scaler.update()
  221. self.optimizer.zero_grad()
  222. # ema
  223. if self.model_ema is not None:
  224. self.model_ema.update(model)
  225. self.last_opt_step = ni
  226. # display
  227. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  228. t1 = time.time()
  229. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  230. # basic infor
  231. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  232. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  233. log += '[lr: {:.6f}]'.format(cur_lr[2])
  234. # loss infor
  235. for k in loss_dict_reduced.keys():
  236. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  237. # other infor
  238. log += '[time: {:.2f}]'.format(t1 - t0)
  239. log += '[size: {}]'.format(img_size)
  240. # print log infor
  241. print(log, flush=True)
  242. t0 = time.time()
  243. if self.args.debug:
  244. print("For debug mode, we only train 1 iteration")
  245. break
  246. self.lr_scheduler.step()
  247. def check_second_stage(self):
  248. # set second stage
  249. print('============== Second stage of Training ==============')
  250. self.second_stage = True
  251. # close mosaic augmentation
  252. if self.train_loader.dataset.mosaic_prob > 0.:
  253. print(' - Close < Mosaic Augmentation > ...')
  254. self.train_loader.dataset.mosaic_prob = 0.
  255. self.heavy_eval = True
  256. # close mixup augmentation
  257. if self.train_loader.dataset.mixup_prob > 0.:
  258. print(' - Close < Mixup Augmentation > ...')
  259. self.train_loader.dataset.mixup_prob = 0.
  260. self.heavy_eval = True
  261. # close rotation augmentation
  262. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  263. print(' - Close < degress of rotation > ...')
  264. self.trans_cfg['degrees'] = 0.0
  265. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  266. print(' - Close < shear of rotation >...')
  267. self.trans_cfg['shear'] = 0.0
  268. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  269. print(' - Close < perspective of rotation > ...')
  270. self.trans_cfg['perspective'] = 0.0
  271. # build a new transform for second stage
  272. print(' - Rebuild transforms ...')
  273. self.train_transform, self.trans_cfg = build_transform(
  274. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  275. self.train_loader.dataset.transform = self.train_transform
  276. def check_third_stage(self):
  277. # set third stage
  278. print('============== Third stage of Training ==============')
  279. self.third_stage = True
  280. # close random affine
  281. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  282. print(' - Close < translate of affine > ...')
  283. self.trans_cfg['translate'] = 0.0
  284. if 'scale' in self.trans_cfg.keys():
  285. print(' - Close < scale of affine >...')
  286. self.trans_cfg['scale'] = [1.0, 1.0]
  287. # build a new transform for second stage
  288. print(' - Rebuild transforms ...')
  289. self.train_transform, self.trans_cfg = build_transform(
  290. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  291. self.train_loader.dataset.transform = self.train_transform
  292. def refine_targets(self, targets, min_box_size):
  293. # rescale targets
  294. for tgt in targets:
  295. boxes = tgt["boxes"].clone()
  296. labels = tgt["labels"].clone()
  297. # refine tgt
  298. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  299. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  300. keep = (min_tgt_size >= min_box_size)
  301. tgt["boxes"] = boxes[keep]
  302. tgt["labels"] = labels[keep]
  303. return targets
  304. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  305. """
  306. Deployed for Multi scale trick.
  307. """
  308. if isinstance(stride, int):
  309. max_stride = stride
  310. elif isinstance(stride, list):
  311. max_stride = max(stride)
  312. # During training phase, the shape of input image is square.
  313. old_img_size = images.shape[-1]
  314. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  315. new_img_size = new_img_size // max_stride * max_stride # size
  316. if new_img_size / old_img_size != 1:
  317. # interpolate
  318. images = torch.nn.functional.interpolate(
  319. input=images,
  320. size=new_img_size,
  321. mode='bilinear',
  322. align_corners=False)
  323. # rescale targets
  324. for tgt in targets:
  325. boxes = tgt["boxes"].clone()
  326. labels = tgt["labels"].clone()
  327. boxes = torch.clamp(boxes, 0, old_img_size)
  328. # rescale box
  329. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  330. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  331. # refine tgt
  332. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  333. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  334. keep = (min_tgt_size >= min_box_size)
  335. tgt["boxes"] = boxes[keep]
  336. tgt["labels"] = labels[keep]
  337. return images, targets, new_img_size
  338. ## YOLOX Trainer
  339. class YoloxTrainer(object):
  340. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  341. # ------------------- basic parameters -------------------
  342. self.args = args
  343. self.epoch = 0
  344. self.best_map = -1.
  345. self.device = device
  346. self.criterion = criterion
  347. self.world_size = world_size
  348. self.grad_accumulate = args.grad_accumulate
  349. self.no_aug_epoch = args.no_aug_epoch
  350. self.heavy_eval = False
  351. # weak augmentatino stage
  352. self.second_stage = False
  353. self.third_stage = False
  354. self.second_stage_epoch = args.no_aug_epoch
  355. self.third_stage_epoch = args.no_aug_epoch // 2
  356. # path to save model
  357. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  358. os.makedirs(self.path_to_save, exist_ok=True)
  359. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  360. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  361. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  362. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  363. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  364. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  365. self.data_cfg = data_cfg
  366. self.model_cfg = model_cfg
  367. self.trans_cfg = trans_cfg
  368. # ---------------------------- Build Transform ----------------------------
  369. self.train_transform, self.trans_cfg = build_transform(
  370. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  371. self.val_transform, _ = build_transform(
  372. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  373. # ---------------------------- Build Dataset & Dataloader ----------------------------
  374. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  375. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  376. # ---------------------------- Build Evaluator ----------------------------
  377. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  378. # ---------------------------- Build Grad. Scaler ----------------------------
  379. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  380. # ---------------------------- Build Optimizer ----------------------------
  381. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  382. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  383. # ---------------------------- Build LR Scheduler ----------------------------
  384. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  385. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  386. if self.args.resume and self.args.resume != 'None':
  387. self.lr_scheduler.step()
  388. # ---------------------------- Build Model-EMA ----------------------------
  389. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  390. print('Build ModelEMA ...')
  391. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  392. else:
  393. self.model_ema = None
  394. def train(self, model):
  395. for epoch in range(self.start_epoch, self.args.max_epoch):
  396. if self.args.distributed:
  397. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  398. # check second stage
  399. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  400. self.check_second_stage()
  401. # save model of the last mosaic epoch
  402. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  403. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  404. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  405. torch.save({'model': model.state_dict(),
  406. 'mAP': round(self.evaluator.map*100, 1),
  407. 'optimizer': self.optimizer.state_dict(),
  408. 'epoch': self.epoch,
  409. 'args': self.args},
  410. checkpoint_path)
  411. # check third stage
  412. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  413. self.check_third_stage()
  414. # save model of the last mosaic epoch
  415. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  416. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  417. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  418. torch.save({'model': model.state_dict(),
  419. 'mAP': round(self.evaluator.map*100, 1),
  420. 'optimizer': self.optimizer.state_dict(),
  421. 'epoch': self.epoch,
  422. 'args': self.args},
  423. checkpoint_path)
  424. # train one epoch
  425. self.epoch = epoch
  426. self.train_one_epoch(model)
  427. # eval one epoch
  428. if self.heavy_eval:
  429. model_eval = model.module if self.args.distributed else model
  430. self.eval(model_eval)
  431. else:
  432. model_eval = model.module if self.args.distributed else model
  433. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  434. self.eval(model_eval)
  435. if self.args.debug:
  436. print("For debug mode, we only train 1 epoch")
  437. break
  438. def eval(self, model):
  439. # chech model
  440. model_eval = model if self.model_ema is None else self.model_ema.ema
  441. if distributed_utils.is_main_process():
  442. # check evaluator
  443. if self.evaluator is None:
  444. print('No evaluator ... save model and go on training.')
  445. print('Saving state, epoch: {}'.format(self.epoch))
  446. weight_name = '{}_no_eval.pth'.format(self.args.model)
  447. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  448. torch.save({'model': model_eval.state_dict(),
  449. 'mAP': -1.,
  450. 'optimizer': self.optimizer.state_dict(),
  451. 'epoch': self.epoch,
  452. 'args': self.args},
  453. checkpoint_path)
  454. else:
  455. print('eval ...')
  456. # set eval mode
  457. model_eval.trainable = False
  458. model_eval.eval()
  459. # evaluate
  460. with torch.no_grad():
  461. self.evaluator.evaluate(model_eval)
  462. # save model
  463. cur_map = self.evaluator.map
  464. if cur_map > self.best_map:
  465. # update best-map
  466. self.best_map = cur_map
  467. # save model
  468. print('Saving state, epoch:', self.epoch)
  469. weight_name = '{}_best.pth'.format(self.args.model)
  470. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  471. torch.save({'model': model_eval.state_dict(),
  472. 'mAP': round(self.best_map*100, 1),
  473. 'optimizer': self.optimizer.state_dict(),
  474. 'epoch': self.epoch,
  475. 'args': self.args},
  476. checkpoint_path)
  477. # set train mode.
  478. model_eval.trainable = True
  479. model_eval.train()
  480. if self.args.distributed:
  481. # wait for all processes to synchronize
  482. dist.barrier()
  483. def train_one_epoch(self, model):
  484. # basic parameters
  485. epoch_size = len(self.train_loader)
  486. img_size = self.args.img_size
  487. t0 = time.time()
  488. nw = epoch_size * self.args.wp_epoch
  489. # Train one epoch
  490. for iter_i, (images, targets) in enumerate(self.train_loader):
  491. ni = iter_i + self.epoch * epoch_size
  492. # Warmup
  493. if ni <= nw:
  494. xi = [0, nw] # x interp
  495. for j, x in enumerate(self.optimizer.param_groups):
  496. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  497. x['lr'] = np.interp(
  498. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  499. if 'momentum' in x:
  500. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  501. # To device
  502. images = images.to(self.device, non_blocking=True).float()
  503. # Multi scale
  504. if self.args.multi_scale and ni % 10 == 0:
  505. images, targets, img_size = self.rescale_image_targets(
  506. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  507. else:
  508. targets = self.refine_targets(targets, self.args.min_box_size)
  509. # Visualize train targets
  510. if self.args.vis_tgt:
  511. vis_data(images*255, targets)
  512. # Inference
  513. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  514. outputs = model(images)
  515. # Compute loss
  516. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  517. losses = loss_dict['losses']
  518. # Grad Accu
  519. if self.grad_accumulate > 1:
  520. losses /= self.grad_accumulate
  521. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  522. # Backward
  523. self.scaler.scale(losses).backward()
  524. # Optimize
  525. if ni % self.grad_accumulate == 0:
  526. self.scaler.step(self.optimizer)
  527. self.scaler.update()
  528. self.optimizer.zero_grad()
  529. # ema
  530. if self.model_ema is not None:
  531. self.model_ema.update(model)
  532. # Logs
  533. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  534. t1 = time.time()
  535. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  536. # basic infor
  537. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  538. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  539. log += '[lr: {:.6f}]'.format(cur_lr[2])
  540. # loss infor
  541. for k in loss_dict_reduced.keys():
  542. loss_val = loss_dict_reduced[k]
  543. if k == 'losses':
  544. loss_val *= self.grad_accumulate
  545. log += '[{}: {:.2f}]'.format(k, loss_val)
  546. # other infor
  547. log += '[time: {:.2f}]'.format(t1 - t0)
  548. log += '[size: {}]'.format(img_size)
  549. # print log infor
  550. print(log, flush=True)
  551. t0 = time.time()
  552. if self.args.debug:
  553. print("For debug mode, we only train 1 iteration")
  554. break
  555. # LR Schedule
  556. if not self.second_stage:
  557. self.lr_scheduler.step()
  558. def check_second_stage(self):
  559. # set second stage
  560. print('============== Second stage of Training ==============')
  561. self.second_stage = True
  562. # close mosaic augmentation
  563. if self.train_loader.dataset.mosaic_prob > 0.:
  564. print(' - Close < Mosaic Augmentation > ...')
  565. self.train_loader.dataset.mosaic_prob = 0.
  566. self.heavy_eval = True
  567. # close mixup augmentation
  568. if self.train_loader.dataset.mixup_prob > 0.:
  569. print(' - Close < Mixup Augmentation > ...')
  570. self.train_loader.dataset.mixup_prob = 0.
  571. self.heavy_eval = True
  572. # close rotation augmentation
  573. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  574. print(' - Close < degress of rotation > ...')
  575. self.trans_cfg['degrees'] = 0.0
  576. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  577. print(' - Close < shear of rotation >...')
  578. self.trans_cfg['shear'] = 0.0
  579. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  580. print(' - Close < perspective of rotation > ...')
  581. self.trans_cfg['perspective'] = 0.0
  582. # build a new transform for second stage
  583. print(' - Rebuild transforms ...')
  584. self.train_transform, self.trans_cfg = build_transform(
  585. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  586. self.train_loader.dataset.transform = self.train_transform
  587. def check_third_stage(self):
  588. # set third stage
  589. print('============== Third stage of Training ==============')
  590. self.third_stage = True
  591. # close random affine
  592. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  593. print(' - Close < translate of affine > ...')
  594. self.trans_cfg['translate'] = 0.0
  595. if 'scale' in self.trans_cfg.keys():
  596. print(' - Close < scale of affine >...')
  597. self.trans_cfg['scale'] = [1.0, 1.0]
  598. # build a new transform for second stage
  599. print(' - Rebuild transforms ...')
  600. self.train_transform, self.trans_cfg = build_transform(
  601. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  602. self.train_loader.dataset.transform = self.train_transform
  603. def refine_targets(self, targets, min_box_size):
  604. # rescale targets
  605. for tgt in targets:
  606. boxes = tgt["boxes"].clone()
  607. labels = tgt["labels"].clone()
  608. # refine tgt
  609. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  610. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  611. keep = (min_tgt_size >= min_box_size)
  612. tgt["boxes"] = boxes[keep]
  613. tgt["labels"] = labels[keep]
  614. return targets
  615. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  616. """
  617. Deployed for Multi scale trick.
  618. """
  619. if isinstance(stride, int):
  620. max_stride = stride
  621. elif isinstance(stride, list):
  622. max_stride = max(stride)
  623. # During training phase, the shape of input image is square.
  624. old_img_size = images.shape[-1]
  625. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  626. new_img_size = new_img_size // max_stride * max_stride # size
  627. if new_img_size / old_img_size != 1:
  628. # interpolate
  629. images = torch.nn.functional.interpolate(
  630. input=images,
  631. size=new_img_size,
  632. mode='bilinear',
  633. align_corners=False)
  634. # rescale targets
  635. for tgt in targets:
  636. boxes = tgt["boxes"].clone()
  637. labels = tgt["labels"].clone()
  638. boxes = torch.clamp(boxes, 0, old_img_size)
  639. # rescale box
  640. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  641. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  642. # refine tgt
  643. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  644. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  645. keep = (min_tgt_size >= min_box_size)
  646. tgt["boxes"] = boxes[keep]
  647. tgt["labels"] = labels[keep]
  648. return images, targets, new_img_size
  649. ## Real-time Convolutional Object Detector Trainer
  650. class RTCTrainer(object):
  651. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  652. # ------------------- basic parameters -------------------
  653. self.args = args
  654. self.epoch = 0
  655. self.best_map = -1.
  656. self.device = device
  657. self.criterion = criterion
  658. self.world_size = world_size
  659. self.grad_accumulate = args.grad_accumulate
  660. self.clip_grad = 35
  661. self.heavy_eval = False
  662. # weak augmentatino stage
  663. self.second_stage = False
  664. self.third_stage = False
  665. self.second_stage_epoch = args.no_aug_epoch
  666. self.third_stage_epoch = args.no_aug_epoch // 2
  667. # path to save model
  668. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  669. os.makedirs(self.path_to_save, exist_ok=True)
  670. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  671. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  672. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  673. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  674. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  675. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  676. self.data_cfg = data_cfg
  677. self.model_cfg = model_cfg
  678. self.trans_cfg = trans_cfg
  679. # ---------------------------- Build Transform ----------------------------
  680. self.train_transform, self.trans_cfg = build_transform(
  681. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  682. self.val_transform, _ = build_transform(
  683. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  684. # ---------------------------- Build Dataset & Dataloader ----------------------------
  685. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  686. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  687. # ---------------------------- Build Evaluator ----------------------------
  688. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  689. # ---------------------------- Build Grad. Scaler ----------------------------
  690. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  691. # ---------------------------- Build Optimizer ----------------------------
  692. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  693. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  694. # ---------------------------- Build LR Scheduler ----------------------------
  695. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  696. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  697. if self.args.resume and self.args.resume != 'None':
  698. self.lr_scheduler.step()
  699. # ---------------------------- Build Model-EMA ----------------------------
  700. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  701. print('Build ModelEMA ...')
  702. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  703. else:
  704. self.model_ema = None
  705. def train(self, model):
  706. for epoch in range(self.start_epoch, self.args.max_epoch):
  707. if self.args.distributed:
  708. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  709. # check second stage
  710. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  711. self.check_second_stage()
  712. # save model of the last mosaic epoch
  713. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  714. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  715. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  716. torch.save({'model': model.state_dict(),
  717. 'mAP': round(self.evaluator.map*100, 1),
  718. 'optimizer': self.optimizer.state_dict(),
  719. 'epoch': self.epoch,
  720. 'args': self.args},
  721. checkpoint_path)
  722. # check third stage
  723. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  724. self.check_third_stage()
  725. # save model of the last mosaic epoch
  726. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  727. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  728. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  729. torch.save({'model': model.state_dict(),
  730. 'mAP': round(self.evaluator.map*100, 1),
  731. 'optimizer': self.optimizer.state_dict(),
  732. 'epoch': self.epoch,
  733. 'args': self.args},
  734. checkpoint_path)
  735. # train one epoch
  736. self.epoch = epoch
  737. self.train_one_epoch(model)
  738. # eval one epoch
  739. if self.heavy_eval:
  740. model_eval = model.module if self.args.distributed else model
  741. self.eval(model_eval)
  742. else:
  743. model_eval = model.module if self.args.distributed else model
  744. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  745. self.eval(model_eval)
  746. if self.args.debug:
  747. print("For debug mode, we only train 1 epoch")
  748. break
  749. def eval(self, model):
  750. # chech model
  751. model_eval = model if self.model_ema is None else self.model_ema.ema
  752. if distributed_utils.is_main_process():
  753. # check evaluator
  754. if self.evaluator is None:
  755. print('No evaluator ... save model and go on training.')
  756. print('Saving state, epoch: {}'.format(self.epoch))
  757. weight_name = '{}_no_eval.pth'.format(self.args.model)
  758. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  759. torch.save({'model': model_eval.state_dict(),
  760. 'mAP': -1.,
  761. 'optimizer': self.optimizer.state_dict(),
  762. 'epoch': self.epoch,
  763. 'args': self.args},
  764. checkpoint_path)
  765. else:
  766. print('eval ...')
  767. # set eval mode
  768. model_eval.trainable = False
  769. model_eval.eval()
  770. # evaluate
  771. with torch.no_grad():
  772. self.evaluator.evaluate(model_eval)
  773. # save model
  774. cur_map = self.evaluator.map
  775. if cur_map > self.best_map:
  776. # update best-map
  777. self.best_map = cur_map
  778. # save model
  779. print('Saving state, epoch:', self.epoch)
  780. weight_name = '{}_best.pth'.format(self.args.model)
  781. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  782. torch.save({'model': model_eval.state_dict(),
  783. 'mAP': round(self.best_map*100, 1),
  784. 'optimizer': self.optimizer.state_dict(),
  785. 'epoch': self.epoch,
  786. 'args': self.args},
  787. checkpoint_path)
  788. # set train mode.
  789. model_eval.trainable = True
  790. model_eval.train()
  791. if self.args.distributed:
  792. # wait for all processes to synchronize
  793. dist.barrier()
  794. def train_one_epoch(self, model):
  795. metric_logger = MetricLogger(delimiter=" ")
  796. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  797. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  798. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  799. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  800. epoch_size = len(self.train_loader)
  801. print_freq = 10
  802. # basic parameters
  803. epoch_size = len(self.train_loader)
  804. img_size = self.args.img_size
  805. nw = epoch_size * self.args.wp_epoch
  806. # Train one epoch
  807. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  808. ni = iter_i + self.epoch * epoch_size
  809. # Warmup
  810. if ni <= nw:
  811. xi = [0, nw] # x interp
  812. for j, x in enumerate(self.optimizer.param_groups):
  813. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  814. x['lr'] = np.interp(
  815. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  816. if 'momentum' in x:
  817. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  818. # To device
  819. images = images.to(self.device, non_blocking=True).float()
  820. # Multi scale
  821. if self.args.multi_scale:
  822. images, targets, img_size = self.rescale_image_targets(
  823. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  824. else:
  825. targets = self.refine_targets(targets, self.args.min_box_size)
  826. # Visualize train targets
  827. if self.args.vis_tgt:
  828. vis_data(images*255, targets)
  829. # Inference
  830. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  831. outputs = model(images)
  832. # Compute loss
  833. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  834. losses = loss_dict['losses']
  835. # Grad Accumulate
  836. if self.grad_accumulate > 1:
  837. losses /= self.grad_accumulate
  838. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  839. # Backward
  840. self.scaler.scale(losses).backward()
  841. # Optimize
  842. if ni % self.grad_accumulate == 0:
  843. grad_norm = None
  844. if self.clip_grad > 0:
  845. # unscale gradients
  846. self.scaler.unscale_(self.optimizer)
  847. # clip gradients
  848. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  849. # optimizer.step
  850. self.scaler.step(self.optimizer)
  851. self.scaler.update()
  852. self.optimizer.zero_grad()
  853. # ema
  854. if self.model_ema is not None:
  855. self.model_ema.update(model)
  856. # Update log
  857. metric_logger.update(**loss_dict_reduced)
  858. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  859. metric_logger.update(grad_norm=grad_norm)
  860. metric_logger.update(size=img_size)
  861. if self.args.debug:
  862. print("For debug mode, we only train 1 iteration")
  863. break
  864. # LR Schedule
  865. if not self.second_stage:
  866. self.lr_scheduler.step()
  867. # Gather the stats from all processes
  868. metric_logger.synchronize_between_processes()
  869. print("Averaged stats:", metric_logger)
  870. def refine_targets(self, targets, min_box_size):
  871. # rescale targets
  872. for tgt in targets:
  873. boxes = tgt["boxes"].clone()
  874. labels = tgt["labels"].clone()
  875. # refine tgt
  876. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  877. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  878. keep = (min_tgt_size >= min_box_size)
  879. tgt["boxes"] = boxes[keep]
  880. tgt["labels"] = labels[keep]
  881. return targets
  882. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  883. """
  884. Deployed for Multi scale trick.
  885. """
  886. if isinstance(stride, int):
  887. max_stride = stride
  888. elif isinstance(stride, list):
  889. max_stride = max(stride)
  890. # During training phase, the shape of input image is square.
  891. old_img_size = images.shape[-1]
  892. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  893. new_img_size = new_img_size // max_stride * max_stride # size
  894. if new_img_size / old_img_size != 1:
  895. # interpolate
  896. images = torch.nn.functional.interpolate(
  897. input=images,
  898. size=new_img_size,
  899. mode='bilinear',
  900. align_corners=False)
  901. # rescale targets
  902. for tgt in targets:
  903. boxes = tgt["boxes"].clone()
  904. labels = tgt["labels"].clone()
  905. boxes = torch.clamp(boxes, 0, old_img_size)
  906. # rescale box
  907. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  908. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  909. # refine tgt
  910. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  911. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  912. keep = (min_tgt_size >= min_box_size)
  913. tgt["boxes"] = boxes[keep]
  914. tgt["labels"] = labels[keep]
  915. return images, targets, new_img_size
  916. def check_second_stage(self):
  917. # set second stage
  918. print('============== Second stage of Training ==============')
  919. self.second_stage = True
  920. # close mosaic augmentation
  921. if self.train_loader.dataset.mosaic_prob > 0.:
  922. print(' - Close < Mosaic Augmentation > ...')
  923. self.train_loader.dataset.mosaic_prob = 0.
  924. self.heavy_eval = True
  925. # close mixup augmentation
  926. if self.train_loader.dataset.mixup_prob > 0.:
  927. print(' - Close < Mixup Augmentation > ...')
  928. self.train_loader.dataset.mixup_prob = 0.
  929. self.heavy_eval = True
  930. # close rotation augmentation
  931. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  932. print(' - Close < degress of rotation > ...')
  933. self.trans_cfg['degrees'] = 0.0
  934. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  935. print(' - Close < shear of rotation >...')
  936. self.trans_cfg['shear'] = 0.0
  937. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  938. print(' - Close < perspective of rotation > ...')
  939. self.trans_cfg['perspective'] = 0.0
  940. # build a new transform for second stage
  941. print(' - Rebuild transforms ...')
  942. self.train_transform, self.trans_cfg = build_transform(
  943. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  944. self.train_loader.dataset.transform = self.train_transform
  945. def check_third_stage(self):
  946. # set third stage
  947. print('============== Third stage of Training ==============')
  948. self.third_stage = True
  949. # close random affine
  950. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  951. print(' - Close < translate of affine > ...')
  952. self.trans_cfg['translate'] = 0.0
  953. if 'scale' in self.trans_cfg.keys():
  954. print(' - Close < scale of affine >...')
  955. self.trans_cfg['scale'] = [1.0, 1.0]
  956. # build a new transform for second stage
  957. print(' - Rebuild transforms ...')
  958. self.train_transform, self.trans_cfg = build_transform(
  959. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  960. self.train_loader.dataset.transform = self.train_transform
  961. ## Real-time DETR Trainer
  962. class RTDetrTrainer(object):
  963. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  964. # ------------------- Basic parameters -------------------
  965. self.args = args
  966. self.epoch = 0
  967. self.best_map = -1.
  968. self.device = device
  969. self.criterion = criterion
  970. self.world_size = world_size
  971. self.grad_accumulate = args.grad_accumulate
  972. self.clip_grad = 0.1
  973. self.heavy_eval = False
  974. self.normalize_bbox = True
  975. # close AMP for RT-DETR
  976. self.args.fp16 = False
  977. # weak augmentatino stage
  978. self.second_stage = False
  979. self.second_stage_epoch = -1
  980. # path to save model
  981. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  982. os.makedirs(self.path_to_save, exist_ok=True)
  983. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  984. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.0001, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  985. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 1.0, 'warmup_iters': 2000} # no lr decay
  986. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  987. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  988. self.data_cfg = data_cfg
  989. self.model_cfg = model_cfg
  990. self.trans_cfg = trans_cfg
  991. # ---------------------------- Build Transform ----------------------------
  992. self.train_transform, self.trans_cfg = build_transform(
  993. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  994. self.val_transform, _ = build_transform(
  995. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  996. if self.trans_cfg["mosaic_prob"] > 0.5:
  997. self.second_stage_epoch = 5
  998. # ---------------------------- Build Dataset & Dataloader ----------------------------
  999. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1000. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1001. # ---------------------------- Build Evaluator ----------------------------
  1002. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1003. # ---------------------------- Build Grad. Scaler ----------------------------
  1004. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1005. # ---------------------------- Build Optimizer ----------------------------
  1006. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1007. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1008. # ---------------------------- Build LR Scheduler ----------------------------
  1009. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1010. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1011. if self.args.resume and self.args.resume != 'None':
  1012. self.lr_scheduler.step()
  1013. # ---------------------------- Build Model-EMA ----------------------------
  1014. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1015. print('Build ModelEMA ...')
  1016. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1017. else:
  1018. self.model_ema = None
  1019. def train(self, model):
  1020. for epoch in range(self.start_epoch, self.args.max_epoch):
  1021. if self.args.distributed:
  1022. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1023. # check second stage
  1024. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1025. self.check_second_stage()
  1026. # save model of the last mosaic epoch
  1027. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1028. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1029. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1030. torch.save({'model': model.state_dict(),
  1031. 'mAP': round(self.evaluator.map*100, 1),
  1032. 'optimizer': self.optimizer.state_dict(),
  1033. 'epoch': self.epoch,
  1034. 'args': self.args},
  1035. checkpoint_path)
  1036. # train one epoch
  1037. self.epoch = epoch
  1038. self.train_one_epoch(model)
  1039. # eval one epoch
  1040. if self.heavy_eval:
  1041. model_eval = model.module if self.args.distributed else model
  1042. self.eval(model_eval)
  1043. else:
  1044. model_eval = model.module if self.args.distributed else model
  1045. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1046. self.eval(model_eval)
  1047. if self.args.debug:
  1048. print("For debug mode, we only train 1 epoch")
  1049. break
  1050. def eval(self, model):
  1051. # chech model
  1052. model_eval = model if self.model_ema is None else self.model_ema.ema
  1053. if distributed_utils.is_main_process():
  1054. # check evaluator
  1055. if self.evaluator is None:
  1056. print('No evaluator ... save model and go on training.')
  1057. print('Saving state, epoch: {}'.format(self.epoch))
  1058. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1059. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1060. torch.save({'model': model_eval.state_dict(),
  1061. 'mAP': -1.,
  1062. 'optimizer': self.optimizer.state_dict(),
  1063. 'epoch': self.epoch,
  1064. 'args': self.args},
  1065. checkpoint_path)
  1066. else:
  1067. print('eval ...')
  1068. # set eval mode
  1069. model_eval.eval()
  1070. # evaluate
  1071. with torch.no_grad():
  1072. self.evaluator.evaluate(model_eval)
  1073. # save model
  1074. cur_map = self.evaluator.map
  1075. if cur_map > self.best_map:
  1076. # update best-map
  1077. self.best_map = cur_map
  1078. # save model
  1079. print('Saving state, epoch:', self.epoch)
  1080. weight_name = '{}_best.pth'.format(self.args.model)
  1081. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1082. torch.save({'model': model_eval.state_dict(),
  1083. 'mAP': round(self.best_map*100, 1),
  1084. 'optimizer': self.optimizer.state_dict(),
  1085. 'epoch': self.epoch,
  1086. 'args': self.args},
  1087. checkpoint_path)
  1088. # set train mode.
  1089. model_eval.train()
  1090. if self.args.distributed:
  1091. # wait for all processes to synchronize
  1092. dist.barrier()
  1093. def train_one_epoch(self, model):
  1094. metric_logger = MetricLogger(delimiter=" ")
  1095. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1096. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1097. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1098. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1099. epoch_size = len(self.train_loader)
  1100. print_freq = 10
  1101. # basic parameters
  1102. epoch_size = len(self.train_loader)
  1103. img_size = self.args.img_size
  1104. nw = self.lr_schedule_dict['warmup_iters']
  1105. # Train one epoch
  1106. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1107. ni = iter_i + self.epoch * epoch_size
  1108. # Warmup
  1109. if ni <= nw:
  1110. xi = [0, nw] # x interp
  1111. for x in self.optimizer.param_groups:
  1112. x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1113. # To device
  1114. images = images.to(self.device, non_blocking=True).float()
  1115. for tgt in targets:
  1116. tgt['boxes'] = tgt['boxes'].to(self.device)
  1117. tgt['labels'] = tgt['labels'].to(self.device)
  1118. # Multi scale
  1119. if self.args.multi_scale:
  1120. images, targets, img_size = self.rescale_image_targets(
  1121. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1122. else:
  1123. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1124. # xyxy -> cxcywh
  1125. targets = self.box_xyxy_to_cxcywh(targets)
  1126. # Visualize train targets
  1127. if self.args.vis_tgt:
  1128. targets = self.box_cxcywh_to_xyxy(targets)
  1129. vis_data(images, targets, normalized_bbox=self.normalize_bbox,
  1130. pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1131. targets = self.box_xyxy_to_cxcywh(targets)
  1132. # Inference
  1133. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1134. outputs = model(images, targets)
  1135. # Compute loss
  1136. loss_dict = self.criterion(outputs, targets)
  1137. losses = sum(loss_dict.values())
  1138. # Grad Accumulate
  1139. if self.grad_accumulate > 1:
  1140. losses /= self.grad_accumulate
  1141. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1142. # Backward
  1143. self.scaler.scale(losses).backward()
  1144. # Optimize
  1145. if ni % self.grad_accumulate == 0:
  1146. grad_norm = None
  1147. if self.clip_grad > 0:
  1148. # unscale gradients
  1149. self.scaler.unscale_(self.optimizer)
  1150. # clip gradients
  1151. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1152. # optimizer.step
  1153. self.scaler.step(self.optimizer)
  1154. self.scaler.update()
  1155. self.optimizer.zero_grad()
  1156. # ema
  1157. if self.model_ema is not None:
  1158. self.model_ema.update(model)
  1159. # Update log
  1160. metric_logger.update(loss=losses.item(), **loss_dict_reduced)
  1161. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1162. metric_logger.update(grad_norm=grad_norm)
  1163. metric_logger.update(size=img_size)
  1164. if self.args.debug:
  1165. print("For debug mode, we only train 1 iteration")
  1166. break
  1167. # LR Schedule
  1168. if not self.second_stage:
  1169. self.lr_scheduler.step()
  1170. def refine_targets(self, img_size, targets, min_box_size):
  1171. # rescale targets
  1172. for tgt in targets:
  1173. boxes = tgt["boxes"].clone()
  1174. labels = tgt["labels"].clone()
  1175. # refine tgt
  1176. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1177. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1178. keep = (min_tgt_size >= min_box_size)
  1179. if self.normalize_bbox:
  1180. # normalize box
  1181. boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
  1182. boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
  1183. tgt["boxes"] = boxes[keep]
  1184. tgt["labels"] = labels[keep]
  1185. return targets
  1186. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1187. """
  1188. Deployed for Multi scale trick.
  1189. """
  1190. if isinstance(stride, int):
  1191. max_stride = stride
  1192. elif isinstance(stride, list):
  1193. max_stride = max(stride)
  1194. # During training phase, the shape of input image is square.
  1195. old_img_size = images.shape[-1]
  1196. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1197. new_img_size = new_img_size // max_stride * max_stride # size
  1198. if new_img_size / old_img_size != 1:
  1199. # interpolate
  1200. images = torch.nn.functional.interpolate(
  1201. input=images,
  1202. size=new_img_size,
  1203. mode='bilinear',
  1204. align_corners=False)
  1205. # rescale targets
  1206. for tgt in targets:
  1207. boxes = tgt["boxes"].clone()
  1208. labels = tgt["labels"].clone()
  1209. boxes = torch.clamp(boxes, 0, old_img_size)
  1210. # rescale box
  1211. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1212. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1213. # refine tgt
  1214. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1215. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1216. keep = (min_tgt_size >= min_box_size)
  1217. if self.normalize_bbox:
  1218. # normalize box
  1219. boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
  1220. boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
  1221. tgt["boxes"] = boxes[keep]
  1222. tgt["labels"] = labels[keep]
  1223. return images, targets, new_img_size
  1224. def box_xyxy_to_cxcywh(self, targets):
  1225. # rescale targets
  1226. for tgt in targets:
  1227. boxes_xyxy = tgt["boxes"].clone()
  1228. # rescale box
  1229. cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
  1230. bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
  1231. boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
  1232. tgt["boxes"] = boxes_bwbh
  1233. return targets
  1234. def box_cxcywh_to_xyxy(self, targets):
  1235. # rescale targets
  1236. for tgt in targets:
  1237. boxes_cxcywh = tgt["boxes"].clone()
  1238. # rescale box
  1239. x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
  1240. x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
  1241. boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
  1242. tgt["boxes"] = boxes_bwbh
  1243. return targets
  1244. def check_second_stage(self):
  1245. # set second stage
  1246. print('============== Second stage of Training ==============')
  1247. self.second_stage = True
  1248. # close mosaic augmentation
  1249. if self.train_loader.dataset.mosaic_prob > 0.:
  1250. print(' - Close < Mosaic Augmentation > ...')
  1251. self.train_loader.dataset.mosaic_prob = 0.
  1252. self.heavy_eval = True
  1253. # close mixup augmentation
  1254. if self.train_loader.dataset.mixup_prob > 0.:
  1255. print(' - Close < Mixup Augmentation > ...')
  1256. self.train_loader.dataset.mixup_prob = 0.
  1257. self.heavy_eval = True
  1258. # close rotation augmentation
  1259. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1260. print(' - Close < degress of rotation > ...')
  1261. self.trans_cfg['degrees'] = 0.0
  1262. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1263. print(' - Close < shear of rotation >...')
  1264. self.trans_cfg['shear'] = 0.0
  1265. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1266. print(' - Close < perspective of rotation > ...')
  1267. self.trans_cfg['perspective'] = 0.0
  1268. # build a new transform for second stage
  1269. print(' - Rebuild transforms ...')
  1270. self.train_transform, self.trans_cfg = build_transform(
  1271. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1272. self.train_transform.set_weak_augment()
  1273. self.train_loader.dataset.transform = self.train_transform
  1274. ## Real-time PlainDETR Trainer
  1275. class RTPDetrTrainer(RTDetrTrainer):
  1276. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1277. super().__init__(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1278. # ------------------- Basic parameters -------------------
  1279. ## Reset optimzier hyper-parameters
  1280. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.05, 'lr0': 0.0002, 'backbone_lr_ratio': 0.1}
  1281. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 1.0, 'warmup_iters': 1000} # no lr decay
  1282. self.normalize_bbox = False
  1283. # ---------------------------- Build Optimizer ----------------------------
  1284. print("- Re-build oprimizer")
  1285. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1286. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1287. # ---------------------------- Build LR Scheduler ----------------------------
  1288. print("- Re-build lr scheduler")
  1289. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1290. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1291. if self.args.resume and self.args.resume != 'None':
  1292. self.lr_scheduler.step()
  1293. def train_one_epoch(self, model):
  1294. metric_logger = MetricLogger(delimiter=" ")
  1295. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1296. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1297. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1298. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1299. epoch_size = len(self.train_loader)
  1300. print_freq = 10
  1301. # basic parameters
  1302. epoch_size = len(self.train_loader)
  1303. img_size = self.args.img_size
  1304. nw = self.lr_schedule_dict['warmup_iters']
  1305. # Train one epoch
  1306. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1307. ni = iter_i + self.epoch * epoch_size
  1308. # Warmup
  1309. if ni <= nw:
  1310. xi = [0, nw] # x interp
  1311. for x in self.optimizer.param_groups:
  1312. x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1313. # To device
  1314. images = images.to(self.device, non_blocking=True).float()
  1315. # Multi scale
  1316. if self.args.multi_scale:
  1317. images, targets, img_size = self.rescale_image_targets(
  1318. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1319. else:
  1320. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1321. # xyxy -> cxcywh
  1322. targets = self.box_xyxy_to_cxcywh(targets)
  1323. # Visualize train targets
  1324. if self.args.vis_tgt:
  1325. targets = self.box_cxcywh_to_xyxy(targets)
  1326. vis_data(images, targets, pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1327. targets = self.box_xyxy_to_cxcywh(targets)
  1328. # Inference
  1329. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1330. outputs = model(images)
  1331. # Compute loss
  1332. loss_dict = self.criterion(outputs, targets)
  1333. losses = sum(loss_dict.values())
  1334. # Grad Accumulate
  1335. if self.grad_accumulate > 1:
  1336. losses /= self.grad_accumulate
  1337. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1338. # Backward
  1339. self.scaler.scale(losses).backward()
  1340. # Optimize
  1341. if ni % self.grad_accumulate == 0:
  1342. grad_norm = None
  1343. if self.clip_grad > 0:
  1344. # unscale gradients
  1345. self.scaler.unscale_(self.optimizer)
  1346. # clip gradients
  1347. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1348. # optimizer.step
  1349. self.scaler.step(self.optimizer)
  1350. self.scaler.update()
  1351. self.optimizer.zero_grad()
  1352. # ema
  1353. if self.model_ema is not None:
  1354. self.model_ema.update(model)
  1355. # Update log
  1356. metric_logger.update(loss=losses.item(), **loss_dict_reduced)
  1357. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1358. metric_logger.update(grad_norm=grad_norm)
  1359. metric_logger.update(size=img_size)
  1360. if self.args.debug:
  1361. print("For debug mode, we only train 1 iteration")
  1362. break
  1363. # LR Schedule
  1364. if not self.second_stage:
  1365. self.lr_scheduler.step()
  1366. # ## Real-time PlainDETR Trainer
  1367. # class RTPDetrTrainer(object):
  1368. # def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1369. # # ------------------- Basic parameters -------------------
  1370. # self.args = args
  1371. # self.epoch = 0
  1372. # self.best_map = -1.
  1373. # self.device = device
  1374. # self.criterion = criterion
  1375. # self.world_size = world_size
  1376. # self.grad_accumulate = args.grad_accumulate
  1377. # self.clip_grad = 0.1
  1378. # self.heavy_eval = False
  1379. # # close AMP for RT-DETR
  1380. # self.args.fp16 = False
  1381. # # weak augmentatino stage
  1382. # self.second_stage = False
  1383. # self.second_stage_epoch = -1
  1384. # # path to save model
  1385. # self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1386. # os.makedirs(self.path_to_save, exist_ok=True)
  1387. # # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1388. # self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  1389. # self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 2000} # no lr decay
  1390. # self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  1391. # # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1392. # self.data_cfg = data_cfg
  1393. # self.model_cfg = model_cfg
  1394. # self.trans_cfg = trans_cfg
  1395. # # ---------------------------- Build Transform ----------------------------
  1396. # self.train_transform, self.trans_cfg = build_transform(
  1397. # args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1398. # self.val_transform, _ = build_transform(
  1399. # args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1400. # if self.trans_cfg["mosaic_prob"] > 0.5:
  1401. # self.second_stage_epoch = 5
  1402. # # ---------------------------- Build Dataset & Dataloader ----------------------------
  1403. # self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1404. # self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1405. # # ---------------------------- Build Evaluator ----------------------------
  1406. # self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1407. # # ---------------------------- Build Grad. Scaler ----------------------------
  1408. # self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1409. # # ---------------------------- Build Optimizer ----------------------------
  1410. # self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1411. # self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1412. # # ---------------------------- Build LR Scheduler ----------------------------
  1413. # self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1414. # self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1415. # if self.args.resume and self.args.resume != 'None':
  1416. # self.lr_scheduler.step()
  1417. # # ---------------------------- Build Model-EMA ----------------------------
  1418. # if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1419. # print('Build ModelEMA ...')
  1420. # self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1421. # else:
  1422. # self.model_ema = None
  1423. # def train(self, model):
  1424. # for epoch in range(self.start_epoch, self.args.max_epoch):
  1425. # if self.args.distributed:
  1426. # self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1427. # # check second stage
  1428. # if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1429. # self.check_second_stage()
  1430. # # save model of the last mosaic epoch
  1431. # weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1432. # checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1433. # print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1434. # torch.save({'model': model.state_dict(),
  1435. # 'mAP': round(self.evaluator.map*100, 1),
  1436. # 'optimizer': self.optimizer.state_dict(),
  1437. # 'epoch': self.epoch,
  1438. # 'args': self.args},
  1439. # checkpoint_path)
  1440. # # train one epoch
  1441. # self.epoch = epoch
  1442. # self.train_one_epoch(model)
  1443. # # eval one epoch
  1444. # if self.heavy_eval:
  1445. # model_eval = model.module if self.args.distributed else model
  1446. # self.eval(model_eval)
  1447. # else:
  1448. # model_eval = model.module if self.args.distributed else model
  1449. # if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1450. # self.eval(model_eval)
  1451. # if self.args.debug:
  1452. # print("For debug mode, we only train 1 epoch")
  1453. # break
  1454. # def eval(self, model):
  1455. # # chech model
  1456. # model_eval = model if self.model_ema is None else self.model_ema.ema
  1457. # if distributed_utils.is_main_process():
  1458. # # check evaluator
  1459. # if self.evaluator is None:
  1460. # print('No evaluator ... save model and go on training.')
  1461. # print('Saving state, epoch: {}'.format(self.epoch))
  1462. # weight_name = '{}_no_eval.pth'.format(self.args.model)
  1463. # checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1464. # torch.save({'model': model_eval.state_dict(),
  1465. # 'mAP': -1.,
  1466. # 'optimizer': self.optimizer.state_dict(),
  1467. # 'epoch': self.epoch,
  1468. # 'args': self.args},
  1469. # checkpoint_path)
  1470. # else:
  1471. # print('eval ...')
  1472. # # set eval mode
  1473. # model_eval.eval()
  1474. # # evaluate
  1475. # with torch.no_grad():
  1476. # self.evaluator.evaluate(model_eval)
  1477. # # save model
  1478. # cur_map = self.evaluator.map
  1479. # if cur_map > self.best_map:
  1480. # # update best-map
  1481. # self.best_map = cur_map
  1482. # # save model
  1483. # print('Saving state, epoch:', self.epoch)
  1484. # weight_name = '{}_best.pth'.format(self.args.model)
  1485. # checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1486. # torch.save({'model': model_eval.state_dict(),
  1487. # 'mAP': round(self.best_map*100, 1),
  1488. # 'optimizer': self.optimizer.state_dict(),
  1489. # 'epoch': self.epoch,
  1490. # 'args': self.args},
  1491. # checkpoint_path)
  1492. # # set train mode.
  1493. # model_eval.train()
  1494. # if self.args.distributed:
  1495. # # wait for all processes to synchronize
  1496. # dist.barrier()
  1497. # def train_one_epoch(self, model):
  1498. # metric_logger = MetricLogger(delimiter=" ")
  1499. # metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1500. # metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1501. # metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1502. # header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1503. # epoch_size = len(self.train_loader)
  1504. # print_freq = 10
  1505. # # basic parameters
  1506. # epoch_size = len(self.train_loader)
  1507. # img_size = self.args.img_size
  1508. # nw = self.lr_schedule_dict['warmup_iters']
  1509. # # Train one epoch
  1510. # for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1511. # ni = iter_i + self.epoch * epoch_size
  1512. # # Warmup
  1513. # if ni <= nw:
  1514. # xi = [0, nw] # x interp
  1515. # for x in self.optimizer.param_groups:
  1516. # x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1517. # # To device
  1518. # images = images.to(self.device, non_blocking=True).float()
  1519. # # Multi scale
  1520. # if self.args.multi_scale:
  1521. # images, targets, img_size = self.rescale_image_targets(
  1522. # images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1523. # else:
  1524. # targets = self.refine_targets(targets, self.args.min_box_size)
  1525. # # xyxy -> cxcywh
  1526. # targets = self.box_xyxy_to_cxcywh(targets)
  1527. # # Visualize train targets
  1528. # if self.args.vis_tgt:
  1529. # targets = self.box_cxcywh_to_xyxy(targets)
  1530. # vis_data(images, targets, pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1531. # targets = self.box_xyxy_to_cxcywh(targets)
  1532. # # Inference
  1533. # with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1534. # outputs = model(images)
  1535. # # Compute loss
  1536. # loss_dict = self.criterion(outputs, targets)
  1537. # loss_weight_dict = self.criterion.weight_dict
  1538. # losses = sum(loss_dict[k] * loss_weight_dict[k] for k in loss_dict.keys() if k in loss_weight_dict)
  1539. # # Grad Accumulate
  1540. # if self.grad_accumulate > 1:
  1541. # losses /= self.grad_accumulate
  1542. # # Reduce losses over all GPUs for logging purposes
  1543. # loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1544. # loss_dict_reduced_scaled = {k: v * loss_weight_dict[k] for k, v in loss_dict_reduced.items() if k in loss_weight_dict}
  1545. # losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
  1546. # loss_value = losses_reduced_scaled.item()
  1547. # # Backward
  1548. # self.scaler.scale(losses).backward()
  1549. # # Optimize
  1550. # if ni % self.grad_accumulate == 0:
  1551. # grad_norm = None
  1552. # if self.clip_grad > 0:
  1553. # # unscale gradients
  1554. # self.scaler.unscale_(self.optimizer)
  1555. # # clip gradients
  1556. # grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1557. # # optimizer.step
  1558. # self.scaler.step(self.optimizer)
  1559. # self.scaler.update()
  1560. # self.optimizer.zero_grad()
  1561. # # ema
  1562. # if self.model_ema is not None:
  1563. # self.model_ema.update(model)
  1564. # # Update log
  1565. # metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
  1566. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1567. # metric_logger.update(grad_norm=grad_norm)
  1568. # metric_logger.update(size=img_size)
  1569. # if self.args.debug:
  1570. # print("For debug mode, we only train 1 iteration")
  1571. # break
  1572. # # LR Schedule
  1573. # if not self.second_stage:
  1574. # self.lr_scheduler.step()
  1575. # def refine_targets(self, targets, min_box_size):
  1576. # # rescale targets
  1577. # for tgt in targets:
  1578. # boxes = tgt["boxes"].clone()
  1579. # labels = tgt["labels"].clone()
  1580. # # refine tgt
  1581. # tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1582. # min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1583. # keep = (min_tgt_size >= min_box_size)
  1584. # tgt["boxes"] = boxes[keep]
  1585. # tgt["labels"] = labels[keep]
  1586. # return targets
  1587. # def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1588. # """
  1589. # Deployed for Multi scale trick.
  1590. # """
  1591. # if isinstance(stride, int):
  1592. # max_stride = stride
  1593. # elif isinstance(stride, list):
  1594. # max_stride = max(stride)
  1595. # # During training phase, the shape of input image is square.
  1596. # old_img_size = images.shape[-1]
  1597. # new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1598. # new_img_size = new_img_size // max_stride * max_stride # size
  1599. # if new_img_size / old_img_size != 1:
  1600. # # interpolate
  1601. # images = torch.nn.functional.interpolate(
  1602. # input=images,
  1603. # size=new_img_size,
  1604. # mode='bilinear',
  1605. # align_corners=False)
  1606. # # rescale targets
  1607. # for tgt in targets:
  1608. # boxes = tgt["boxes"].clone()
  1609. # labels = tgt["labels"].clone()
  1610. # boxes = torch.clamp(boxes, 0, old_img_size)
  1611. # # rescale box
  1612. # boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1613. # boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1614. # # refine tgt
  1615. # tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1616. # min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1617. # keep = (min_tgt_size >= min_box_size)
  1618. # tgt["boxes"] = boxes[keep]
  1619. # tgt["labels"] = labels[keep]
  1620. # return images, targets, new_img_size
  1621. # def box_xyxy_to_cxcywh(self, targets):
  1622. # # rescale targets
  1623. # for tgt in targets:
  1624. # boxes_xyxy = tgt["boxes"].clone()
  1625. # # rescale box
  1626. # cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
  1627. # bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
  1628. # boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
  1629. # tgt["boxes"] = boxes_bwbh
  1630. # return targets
  1631. # def box_cxcywh_to_xyxy(self, targets):
  1632. # # rescale targets
  1633. # for tgt in targets:
  1634. # boxes_cxcywh = tgt["boxes"].clone()
  1635. # # rescale box
  1636. # x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
  1637. # x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
  1638. # boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
  1639. # tgt["boxes"] = boxes_bwbh
  1640. # return targets
  1641. # def check_second_stage(self):
  1642. # # set second stage
  1643. # print('============== Second stage of Training ==============')
  1644. # self.second_stage = True
  1645. # # close mosaic augmentation
  1646. # if self.train_loader.dataset.mosaic_prob > 0.:
  1647. # print(' - Close < Mosaic Augmentation > ...')
  1648. # self.train_loader.dataset.mosaic_prob = 0.
  1649. # self.heavy_eval = True
  1650. # # close mixup augmentation
  1651. # if self.train_loader.dataset.mixup_prob > 0.:
  1652. # print(' - Close < Mixup Augmentation > ...')
  1653. # self.train_loader.dataset.mixup_prob = 0.
  1654. # self.heavy_eval = True
  1655. # # close rotation augmentation
  1656. # if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1657. # print(' - Close < degress of rotation > ...')
  1658. # self.trans_cfg['degrees'] = 0.0
  1659. # if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1660. # print(' - Close < shear of rotation >...')
  1661. # self.trans_cfg['shear'] = 0.0
  1662. # if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1663. # print(' - Close < perspective of rotation > ...')
  1664. # self.trans_cfg['perspective'] = 0.0
  1665. # # build a new transform for second stage
  1666. # print(' - Rebuild transforms ...')
  1667. # self.train_transform, self.trans_cfg = build_transform(
  1668. # args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1669. # self.train_transform.set_weak_augment()
  1670. # self.train_loader.dataset.transform = self.train_transform
  1671. # ----------------------- Det + Seg trainers -----------------------
  1672. ## RTCDet Trainer for Det + Seg
  1673. class RTCTrainerDS(object):
  1674. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1675. # ------------------- basic parameters -------------------
  1676. self.args = args
  1677. self.epoch = 0
  1678. self.best_map = -1.
  1679. self.device = device
  1680. self.criterion = criterion
  1681. self.world_size = world_size
  1682. self.grad_accumulate = args.grad_accumulate
  1683. self.clip_grad = 35
  1684. self.heavy_eval = False
  1685. # weak augmentatino stage
  1686. self.second_stage = False
  1687. self.third_stage = False
  1688. self.second_stage_epoch = args.no_aug_epoch
  1689. self.third_stage_epoch = args.no_aug_epoch // 2
  1690. # path to save model
  1691. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1692. os.makedirs(self.path_to_save, exist_ok=True)
  1693. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1694. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1695. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1696. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1697. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1698. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1699. self.data_cfg = data_cfg
  1700. self.model_cfg = model_cfg
  1701. self.trans_cfg = trans_cfg
  1702. # ---------------------------- Build Transform ----------------------------
  1703. self.train_transform, self.trans_cfg = build_transform(
  1704. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1705. self.val_transform, _ = build_transform(
  1706. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1707. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1708. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1709. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1710. # ---------------------------- Build Evaluator ----------------------------
  1711. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1712. # ---------------------------- Build Grad. Scaler ----------------------------
  1713. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1714. # ---------------------------- Build Optimizer ----------------------------
  1715. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1716. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1717. # ---------------------------- Build LR Scheduler ----------------------------
  1718. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1719. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1720. if self.args.resume and self.args.resume != 'None':
  1721. self.lr_scheduler.step()
  1722. # ---------------------------- Build Model-EMA ----------------------------
  1723. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1724. print('Build ModelEMA ...')
  1725. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1726. else:
  1727. self.model_ema = None
  1728. def train(self, model):
  1729. for epoch in range(self.start_epoch, self.args.max_epoch):
  1730. if self.args.distributed:
  1731. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1732. # check second stage
  1733. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1734. self.check_second_stage()
  1735. # save model of the last mosaic epoch
  1736. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1737. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1738. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1739. torch.save({'model': model.state_dict(),
  1740. 'mAP': round(self.evaluator.map*100, 1),
  1741. 'optimizer': self.optimizer.state_dict(),
  1742. 'epoch': self.epoch,
  1743. 'args': self.args},
  1744. checkpoint_path)
  1745. # check third stage
  1746. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1747. self.check_third_stage()
  1748. # save model of the last mosaic epoch
  1749. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1750. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1751. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1752. torch.save({'model': model.state_dict(),
  1753. 'mAP': round(self.evaluator.map*100, 1),
  1754. 'optimizer': self.optimizer.state_dict(),
  1755. 'epoch': self.epoch,
  1756. 'args': self.args},
  1757. checkpoint_path)
  1758. # train one epoch
  1759. self.epoch = epoch
  1760. self.train_one_epoch(model)
  1761. # eval one epoch
  1762. if self.heavy_eval:
  1763. model_eval = model.module if self.args.distributed else model
  1764. self.eval(model_eval)
  1765. else:
  1766. model_eval = model.module if self.args.distributed else model
  1767. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1768. self.eval(model_eval)
  1769. if self.args.debug:
  1770. print("For debug mode, we only train 1 epoch")
  1771. break
  1772. def eval(self, model):
  1773. # chech model
  1774. model_eval = model if self.model_ema is None else self.model_ema.ema
  1775. if distributed_utils.is_main_process():
  1776. # check evaluator
  1777. if self.evaluator is None:
  1778. print('No evaluator ... save model and go on training.')
  1779. print('Saving state, epoch: {}'.format(self.epoch))
  1780. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1781. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1782. torch.save({'model': model_eval.state_dict(),
  1783. 'mAP': -1.,
  1784. 'optimizer': self.optimizer.state_dict(),
  1785. 'epoch': self.epoch,
  1786. 'args': self.args},
  1787. checkpoint_path)
  1788. else:
  1789. print('eval ...')
  1790. # set eval mode
  1791. model_eval.trainable = False
  1792. model_eval.eval()
  1793. # evaluate
  1794. with torch.no_grad():
  1795. self.evaluator.evaluate(model_eval)
  1796. # save model
  1797. cur_map = self.evaluator.map
  1798. if cur_map > self.best_map:
  1799. # update best-map
  1800. self.best_map = cur_map
  1801. # save model
  1802. print('Saving state, epoch:', self.epoch)
  1803. weight_name = '{}_best.pth'.format(self.args.model)
  1804. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1805. torch.save({'model': model_eval.state_dict(),
  1806. 'mAP': round(self.best_map*100, 1),
  1807. 'optimizer': self.optimizer.state_dict(),
  1808. 'epoch': self.epoch,
  1809. 'args': self.args},
  1810. checkpoint_path)
  1811. # set train mode.
  1812. model_eval.trainable = True
  1813. model_eval.train()
  1814. if self.args.distributed:
  1815. # wait for all processes to synchronize
  1816. dist.barrier()
  1817. def train_one_epoch(self, model):
  1818. metric_logger = MetricLogger(delimiter=" ")
  1819. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1820. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1821. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1822. epoch_size = len(self.train_loader)
  1823. print_freq = 10
  1824. # basic parameters
  1825. epoch_size = len(self.train_loader)
  1826. img_size = self.args.img_size
  1827. nw = epoch_size * self.args.wp_epoch
  1828. # Train one epoch
  1829. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1830. ni = iter_i + self.epoch * epoch_size
  1831. # Warmup
  1832. if ni <= nw:
  1833. xi = [0, nw] # x interp
  1834. for j, x in enumerate(self.optimizer.param_groups):
  1835. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1836. x['lr'] = np.interp(
  1837. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1838. if 'momentum' in x:
  1839. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1840. # To device
  1841. images = images.to(self.device, non_blocking=True).float()
  1842. # Multi scale
  1843. if self.args.multi_scale:
  1844. images, targets, img_size = self.rescale_image_targets(
  1845. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1846. else:
  1847. targets = self.refine_targets(targets, self.args.min_box_size)
  1848. # Visualize train targets
  1849. if self.args.vis_tgt:
  1850. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1851. # Inference
  1852. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1853. outputs = model(images)
  1854. # Compute loss
  1855. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg')
  1856. det_loss_dict = loss_dict['det_loss_dict']
  1857. seg_loss_dict = loss_dict['seg_loss_dict']
  1858. # TODO: finish the backward + optimize
  1859. # # Update log
  1860. # metric_logger.update(**loss_dict_reduced)
  1861. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1862. # metric_logger.update(grad_norm=grad_norm)
  1863. # metric_logger.update(size=img_size)
  1864. if self.args.debug:
  1865. print("For debug mode, we only train 1 iteration")
  1866. break
  1867. # LR Schedule
  1868. if not self.second_stage:
  1869. self.lr_scheduler.step()
  1870. # Gather the stats from all processes
  1871. metric_logger.synchronize_between_processes()
  1872. print("Averaged stats:", metric_logger)
  1873. def refine_targets(self, targets, min_box_size):
  1874. # rescale targets
  1875. for tgt in targets:
  1876. boxes = tgt["boxes"].clone()
  1877. labels = tgt["labels"].clone()
  1878. # refine tgt
  1879. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1880. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1881. keep = (min_tgt_size >= min_box_size)
  1882. tgt["boxes"] = boxes[keep]
  1883. tgt["labels"] = labels[keep]
  1884. return targets
  1885. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1886. """
  1887. Deployed for Multi scale trick.
  1888. """
  1889. if isinstance(stride, int):
  1890. max_stride = stride
  1891. elif isinstance(stride, list):
  1892. max_stride = max(stride)
  1893. # During training phase, the shape of input image is square.
  1894. old_img_size = images.shape[-1]
  1895. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1896. new_img_size = new_img_size // max_stride * max_stride # size
  1897. if new_img_size / old_img_size != 1:
  1898. # interpolate
  1899. images = torch.nn.functional.interpolate(
  1900. input=images,
  1901. size=new_img_size,
  1902. mode='bilinear',
  1903. align_corners=False)
  1904. # rescale targets
  1905. for tgt in targets:
  1906. boxes = tgt["boxes"].clone()
  1907. labels = tgt["labels"].clone()
  1908. boxes = torch.clamp(boxes, 0, old_img_size)
  1909. # rescale box
  1910. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1911. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1912. # refine tgt
  1913. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1914. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1915. keep = (min_tgt_size >= min_box_size)
  1916. tgt["boxes"] = boxes[keep]
  1917. tgt["labels"] = labels[keep]
  1918. return images, targets, new_img_size
  1919. def check_second_stage(self):
  1920. # set second stage
  1921. print('============== Second stage of Training ==============')
  1922. self.second_stage = True
  1923. # close mosaic augmentation
  1924. if self.train_loader.dataset.mosaic_prob > 0.:
  1925. print(' - Close < Mosaic Augmentation > ...')
  1926. self.train_loader.dataset.mosaic_prob = 0.
  1927. self.heavy_eval = True
  1928. # close mixup augmentation
  1929. if self.train_loader.dataset.mixup_prob > 0.:
  1930. print(' - Close < Mixup Augmentation > ...')
  1931. self.train_loader.dataset.mixup_prob = 0.
  1932. self.heavy_eval = True
  1933. # close rotation augmentation
  1934. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1935. print(' - Close < degress of rotation > ...')
  1936. self.trans_cfg['degrees'] = 0.0
  1937. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1938. print(' - Close < shear of rotation >...')
  1939. self.trans_cfg['shear'] = 0.0
  1940. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1941. print(' - Close < perspective of rotation > ...')
  1942. self.trans_cfg['perspective'] = 0.0
  1943. # build a new transform for second stage
  1944. print(' - Rebuild transforms ...')
  1945. self.train_transform, self.trans_cfg = build_transform(
  1946. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1947. self.train_loader.dataset.transform = self.train_transform
  1948. def check_third_stage(self):
  1949. # set third stage
  1950. print('============== Third stage of Training ==============')
  1951. self.third_stage = True
  1952. # close random affine
  1953. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1954. print(' - Close < translate of affine > ...')
  1955. self.trans_cfg['translate'] = 0.0
  1956. if 'scale' in self.trans_cfg.keys():
  1957. print(' - Close < scale of affine >...')
  1958. self.trans_cfg['scale'] = [1.0, 1.0]
  1959. # build a new transform for second stage
  1960. print(' - Rebuild transforms ...')
  1961. self.train_transform, self.trans_cfg = build_transform(
  1962. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1963. self.train_loader.dataset.transform = self.train_transform
  1964. # ----------------------- Det + Seg + Pos trainers -----------------------
  1965. ## RTCDet Trainer for Det + Seg + HumanPose
  1966. class RTCTrainerDSP(object):
  1967. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1968. # ------------------- basic parameters -------------------
  1969. self.args = args
  1970. self.epoch = 0
  1971. self.best_map = -1.
  1972. self.device = device
  1973. self.criterion = criterion
  1974. self.world_size = world_size
  1975. self.grad_accumulate = args.grad_accumulate
  1976. self.clip_grad = 35
  1977. self.heavy_eval = False
  1978. # weak augmentatino stage
  1979. self.second_stage = False
  1980. self.third_stage = False
  1981. self.second_stage_epoch = args.no_aug_epoch
  1982. self.third_stage_epoch = args.no_aug_epoch // 2
  1983. # path to save model
  1984. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1985. os.makedirs(self.path_to_save, exist_ok=True)
  1986. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1987. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1988. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1989. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1990. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1991. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1992. self.data_cfg = data_cfg
  1993. self.model_cfg = model_cfg
  1994. self.trans_cfg = trans_cfg
  1995. # ---------------------------- Build Transform ----------------------------
  1996. self.train_transform, self.trans_cfg = build_transform(
  1997. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1998. self.val_transform, _ = build_transform(
  1999. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  2000. # ---------------------------- Build Dataset & Dataloader ----------------------------
  2001. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  2002. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  2003. # ---------------------------- Build Evaluator ----------------------------
  2004. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  2005. # ---------------------------- Build Grad. Scaler ----------------------------
  2006. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  2007. # ---------------------------- Build Optimizer ----------------------------
  2008. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  2009. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  2010. # ---------------------------- Build LR Scheduler ----------------------------
  2011. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  2012. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  2013. if self.args.resume and self.args.resume != 'None':
  2014. self.lr_scheduler.step()
  2015. # ---------------------------- Build Model-EMA ----------------------------
  2016. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  2017. print('Build ModelEMA ...')
  2018. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  2019. else:
  2020. self.model_ema = None
  2021. def train(self, model):
  2022. for epoch in range(self.start_epoch, self.args.max_epoch):
  2023. if self.args.distributed:
  2024. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  2025. # check second stage
  2026. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  2027. self.check_second_stage()
  2028. # save model of the last mosaic epoch
  2029. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  2030. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  2031. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  2032. torch.save({'model': model.state_dict(),
  2033. 'mAP': round(self.evaluator.map*100, 1),
  2034. 'optimizer': self.optimizer.state_dict(),
  2035. 'epoch': self.epoch,
  2036. 'args': self.args},
  2037. checkpoint_path)
  2038. # check third stage
  2039. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  2040. self.check_third_stage()
  2041. # save model of the last mosaic epoch
  2042. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  2043. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  2044. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  2045. torch.save({'model': model.state_dict(),
  2046. 'mAP': round(self.evaluator.map*100, 1),
  2047. 'optimizer': self.optimizer.state_dict(),
  2048. 'epoch': self.epoch,
  2049. 'args': self.args},
  2050. checkpoint_path)
  2051. # train one epoch
  2052. self.epoch = epoch
  2053. self.train_one_epoch(model)
  2054. # eval one epoch
  2055. if self.heavy_eval:
  2056. model_eval = model.module if self.args.distributed else model
  2057. self.eval(model_eval)
  2058. else:
  2059. model_eval = model.module if self.args.distributed else model
  2060. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  2061. self.eval(model_eval)
  2062. if self.args.debug:
  2063. print("For debug mode, we only train 1 epoch")
  2064. break
  2065. def eval(self, model):
  2066. # chech model
  2067. model_eval = model if self.model_ema is None else self.model_ema.ema
  2068. if distributed_utils.is_main_process():
  2069. # check evaluator
  2070. if self.evaluator is None:
  2071. print('No evaluator ... save model and go on training.')
  2072. print('Saving state, epoch: {}'.format(self.epoch))
  2073. weight_name = '{}_no_eval.pth'.format(self.args.model)
  2074. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  2075. torch.save({'model': model_eval.state_dict(),
  2076. 'mAP': -1.,
  2077. 'optimizer': self.optimizer.state_dict(),
  2078. 'epoch': self.epoch,
  2079. 'args': self.args},
  2080. checkpoint_path)
  2081. else:
  2082. print('eval ...')
  2083. # set eval mode
  2084. model_eval.trainable = False
  2085. model_eval.eval()
  2086. # evaluate
  2087. with torch.no_grad():
  2088. self.evaluator.evaluate(model_eval)
  2089. # save model
  2090. cur_map = self.evaluator.map
  2091. if cur_map > self.best_map:
  2092. # update best-map
  2093. self.best_map = cur_map
  2094. # save model
  2095. print('Saving state, epoch:', self.epoch)
  2096. weight_name = '{}_best.pth'.format(self.args.model)
  2097. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  2098. torch.save({'model': model_eval.state_dict(),
  2099. 'mAP': round(self.best_map*100, 1),
  2100. 'optimizer': self.optimizer.state_dict(),
  2101. 'epoch': self.epoch,
  2102. 'args': self.args},
  2103. checkpoint_path)
  2104. # set train mode.
  2105. model_eval.trainable = True
  2106. model_eval.train()
  2107. if self.args.distributed:
  2108. # wait for all processes to synchronize
  2109. dist.barrier()
  2110. def train_one_epoch(self, model):
  2111. metric_logger = MetricLogger(delimiter=" ")
  2112. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  2113. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  2114. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  2115. epoch_size = len(self.train_loader)
  2116. print_freq = 10
  2117. # basic parameters
  2118. epoch_size = len(self.train_loader)
  2119. img_size = self.args.img_size
  2120. nw = epoch_size * self.args.wp_epoch
  2121. # Train one epoch
  2122. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  2123. ni = iter_i + self.epoch * epoch_size
  2124. # Warmup
  2125. if ni <= nw:
  2126. xi = [0, nw] # x interp
  2127. for j, x in enumerate(self.optimizer.param_groups):
  2128. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  2129. x['lr'] = np.interp(
  2130. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  2131. if 'momentum' in x:
  2132. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  2133. # To device
  2134. images = images.to(self.device, non_blocking=True).float()
  2135. # Multi scale
  2136. if self.args.multi_scale:
  2137. images, targets, img_size = self.rescale_image_targets(
  2138. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  2139. else:
  2140. targets = self.refine_targets(targets, self.args.min_box_size)
  2141. # Visualize train targets
  2142. if self.args.vis_tgt:
  2143. vis_data(images*255, targets, self.data_cfg['num_classes'])
  2144. # Inference
  2145. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  2146. outputs = model(images)
  2147. # Compute loss
  2148. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg_pos')
  2149. det_loss_dict = loss_dict['det_loss_dict']
  2150. seg_loss_dict = loss_dict['seg_loss_dict']
  2151. pos_loss_dict = loss_dict['pos_loss_dict']
  2152. # TODO: finish the backward + optimize
  2153. # # Update log
  2154. # metric_logger.update(**loss_dict_reduced)
  2155. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  2156. # metric_logger.update(grad_norm=grad_norm)
  2157. # metric_logger.update(size=img_size)
  2158. if self.args.debug:
  2159. print("For debug mode, we only train 1 iteration")
  2160. break
  2161. # LR Schedule
  2162. if not self.second_stage:
  2163. self.lr_scheduler.step()
  2164. # Gather the stats from all processes
  2165. metric_logger.synchronize_between_processes()
  2166. print("Averaged stats:", metric_logger)
  2167. def refine_targets(self, targets, min_box_size):
  2168. # rescale targets
  2169. for tgt in targets:
  2170. boxes = tgt["boxes"].clone()
  2171. labels = tgt["labels"].clone()
  2172. # refine tgt
  2173. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  2174. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  2175. keep = (min_tgt_size >= min_box_size)
  2176. tgt["boxes"] = boxes[keep]
  2177. tgt["labels"] = labels[keep]
  2178. return targets
  2179. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  2180. """
  2181. Deployed for Multi scale trick.
  2182. """
  2183. if isinstance(stride, int):
  2184. max_stride = stride
  2185. elif isinstance(stride, list):
  2186. max_stride = max(stride)
  2187. # During training phase, the shape of input image is square.
  2188. old_img_size = images.shape[-1]
  2189. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  2190. new_img_size = new_img_size // max_stride * max_stride # size
  2191. if new_img_size / old_img_size != 1:
  2192. # interpolate
  2193. images = torch.nn.functional.interpolate(
  2194. input=images,
  2195. size=new_img_size,
  2196. mode='bilinear',
  2197. align_corners=False)
  2198. # rescale targets
  2199. for tgt in targets:
  2200. boxes = tgt["boxes"].clone()
  2201. labels = tgt["labels"].clone()
  2202. boxes = torch.clamp(boxes, 0, old_img_size)
  2203. # rescale box
  2204. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  2205. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  2206. # refine tgt
  2207. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  2208. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  2209. keep = (min_tgt_size >= min_box_size)
  2210. tgt["boxes"] = boxes[keep]
  2211. tgt["labels"] = labels[keep]
  2212. return images, targets, new_img_size
  2213. def check_second_stage(self):
  2214. # set second stage
  2215. print('============== Second stage of Training ==============')
  2216. self.second_stage = True
  2217. # close mosaic augmentation
  2218. if self.train_loader.dataset.mosaic_prob > 0.:
  2219. print(' - Close < Mosaic Augmentation > ...')
  2220. self.train_loader.dataset.mosaic_prob = 0.
  2221. self.heavy_eval = True
  2222. # close mixup augmentation
  2223. if self.train_loader.dataset.mixup_prob > 0.:
  2224. print(' - Close < Mixup Augmentation > ...')
  2225. self.train_loader.dataset.mixup_prob = 0.
  2226. self.heavy_eval = True
  2227. # close rotation augmentation
  2228. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  2229. print(' - Close < degress of rotation > ...')
  2230. self.trans_cfg['degrees'] = 0.0
  2231. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  2232. print(' - Close < shear of rotation >...')
  2233. self.trans_cfg['shear'] = 0.0
  2234. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  2235. print(' - Close < perspective of rotation > ...')
  2236. self.trans_cfg['perspective'] = 0.0
  2237. # build a new transform for second stage
  2238. print(' - Rebuild transforms ...')
  2239. self.train_transform, self.trans_cfg = build_transform(
  2240. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  2241. self.train_loader.dataset.transform = self.train_transform
  2242. def check_third_stage(self):
  2243. # set third stage
  2244. print('============== Third stage of Training ==============')
  2245. self.third_stage = True
  2246. # close random affine
  2247. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  2248. print(' - Close < translate of affine > ...')
  2249. self.trans_cfg['translate'] = 0.0
  2250. if 'scale' in self.trans_cfg.keys():
  2251. print(' - Close < scale of affine >...')
  2252. self.trans_cfg['scale'] = [1.0, 1.0]
  2253. # build a new transform for second stage
  2254. print(' - Rebuild transforms ...')
  2255. self.train_transform, self.trans_cfg = build_transform(
  2256. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  2257. self.train_loader.dataset.transform = self.train_transform
  2258. # Build Trainer
  2259. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  2260. # ----------------------- Det trainers -----------------------
  2261. if model_cfg['trainer_type'] == 'yolov8':
  2262. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2263. elif model_cfg['trainer_type'] == 'yolox':
  2264. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2265. elif model_cfg['trainer_type'] == 'rtcdet':
  2266. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2267. elif model_cfg['trainer_type'] == 'rtdetr':
  2268. return RTDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2269. elif model_cfg['trainer_type'] == 'rtpdetr':
  2270. return RTPDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2271. # ----------------------- Det + Seg trainers -----------------------
  2272. elif model_cfg['trainer_type'] == 'rtcdet_ds':
  2273. return RTCTrainerDS(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2274. # ----------------------- Det + Seg + Pos trainers -----------------------
  2275. elif model_cfg['trainer_type'] == 'rtcdet_dsp':
  2276. return RTCTrainerDSP(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2277. else:
  2278. raise NotImplementedError(model_cfg['trainer_type'])