yolox.py 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. import torch
  2. import torch.nn as nn
  3. from .yolox_backbone import build_backbone
  4. from .yolox_pafpn import build_fpn
  5. from .yolox_head import build_head
  6. from utils.nms import multiclass_nms
  7. # YOLOX
  8. class YOLOX(nn.Module):
  9. def __init__(self,
  10. cfg,
  11. device,
  12. num_classes=20,
  13. conf_thresh=0.01,
  14. topk=100,
  15. nms_thresh=0.5,
  16. trainable=False):
  17. super(YOLOX, self).__init__()
  18. # --------- Basic Parameters ----------
  19. self.cfg = cfg
  20. self.device = device
  21. self.stride = [8, 16, 32]
  22. self.num_classes = num_classes
  23. self.trainable = trainable
  24. self.conf_thresh = conf_thresh
  25. self.nms_thresh = nms_thresh
  26. self.topk = topk
  27. # ------------------- Network Structure -------------------
  28. ## 主干网络
  29. self.backbone, feats_dim = build_backbone(cfg=cfg)
  30. ## 颈部网络: 特征金字塔
  31. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  32. self.head_dim = self.fpn.out_dim
  33. ## 检测头
  34. self.non_shared_heads = nn.ModuleList(
  35. [build_head(cfg, head_dim, head_dim, num_classes)
  36. for head_dim in self.head_dim
  37. ])
  38. ## 预测层
  39. self.obj_preds = nn.ModuleList(
  40. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  41. for head in self.non_shared_heads
  42. ])
  43. self.cls_preds = nn.ModuleList(
  44. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  45. for head in self.non_shared_heads
  46. ])
  47. self.reg_preds = nn.ModuleList(
  48. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  49. for head in self.non_shared_heads
  50. ])
  51. # --------- Network Initialization ----------
  52. # init bias
  53. self.init_yolo()
  54. def init_yolo(self):
  55. # Init yolo
  56. for m in self.modules():
  57. if isinstance(m, nn.BatchNorm2d):
  58. m.eps = 1e-3
  59. m.momentum = 0.03
  60. # Init bias
  61. init_prob = 0.01
  62. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  63. # obj pred
  64. for obj_pred in self.obj_preds:
  65. b = obj_pred.bias.view(1, -1)
  66. b.data.fill_(bias_value.item())
  67. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  68. # cls pred
  69. for cls_pred in self.cls_preds:
  70. b = cls_pred.bias.view(1, -1)
  71. b.data.fill_(bias_value.item())
  72. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  73. # reg pred
  74. for reg_pred in self.reg_preds:
  75. b = reg_pred.bias.view(-1, )
  76. b.data.fill_(1.0)
  77. reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  78. w = reg_pred.weight
  79. w.data.fill_(0.)
  80. reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  81. def generate_anchors(self, level, fmp_size):
  82. """
  83. fmp_size: (List) [H, W]
  84. """
  85. # generate grid cells
  86. fmp_h, fmp_w = fmp_size
  87. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  88. # [H, W, 2] -> [HW, 2]
  89. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  90. anchor_xy *= self.stride[level]
  91. anchors = anchor_xy.to(self.device)
  92. return anchors
  93. def decode_boxes(self, anchors, reg_pred, stride):
  94. """
  95. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  96. reg_pred: (List[Tensor]) [B, M, 4] or [M, 4]
  97. """
  98. # center of bbox
  99. pred_ctr_xy = anchors + reg_pred[..., :2] * stride
  100. # size of bbox
  101. pred_box_wh = reg_pred[..., 2:].exp() * stride
  102. pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
  103. pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
  104. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  105. return pred_box
  106. def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
  107. """
  108. Input:
  109. obj_preds: List(Tensor) [[H x W, 1], ...]
  110. cls_preds: List(Tensor) [[H x W, C], ...]
  111. reg_preds: List(Tensor) [[H x W, 4], ...]
  112. anchors: List(Tensor) [[H x W, 2], ...]
  113. """
  114. all_scores = []
  115. all_labels = []
  116. all_bboxes = []
  117. for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchors_i) in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
  118. # (H x W x C,)
  119. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  120. # Keep top k top scoring indices only.
  121. num_topk = min(self.topk, reg_pred_i.size(0))
  122. # torch.sort is actually faster than .topk (at least on GPUs)
  123. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  124. topk_scores = predicted_prob[:num_topk]
  125. topk_idxs = topk_idxs[:num_topk]
  126. # filter out the proposals with low confidence score
  127. keep_idxs = topk_scores > self.conf_thresh
  128. scores = topk_scores[keep_idxs]
  129. topk_idxs = topk_idxs[keep_idxs]
  130. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  131. labels = topk_idxs % self.num_classes
  132. reg_pred_i = reg_pred_i[anchor_idxs]
  133. anchors_i = anchors_i[anchor_idxs]
  134. # decode box: [M, 4]
  135. bboxes = self.decode_boxes(anchors_i, reg_pred_i, self.stride[level])
  136. all_scores.append(scores)
  137. all_labels.append(labels)
  138. all_bboxes.append(bboxes)
  139. scores = torch.cat(all_scores)
  140. labels = torch.cat(all_labels)
  141. bboxes = torch.cat(all_bboxes)
  142. # to cpu & numpy
  143. scores = scores.cpu().numpy()
  144. labels = labels.cpu().numpy()
  145. bboxes = bboxes.cpu().numpy()
  146. # nms
  147. scores, labels, bboxes = multiclass_nms(
  148. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  149. return bboxes, scores, labels
  150. @torch.no_grad()
  151. def inference_single_image(self, x):
  152. # backbone
  153. pyramid_feats = self.backbone(x)
  154. # fpn
  155. pyramid_feats = self.fpn(pyramid_feats)
  156. # non-shared heads
  157. all_obj_preds = []
  158. all_cls_preds = []
  159. all_reg_preds = []
  160. all_anchors = []
  161. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  162. cls_feat, reg_feat = head(feat)
  163. # [1, C, H, W]
  164. obj_pred = self.obj_preds[level](reg_feat)
  165. cls_pred = self.cls_preds[level](cls_feat)
  166. reg_pred = self.reg_preds[level](reg_feat)
  167. # anchors: [M, 2]
  168. fmp_size = cls_pred.shape[-2:]
  169. anchors = self.generate_anchors(level, fmp_size)
  170. # [1, C, H, W] -> [H, W, C] -> [M, C]
  171. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  172. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  173. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  174. all_obj_preds.append(obj_pred)
  175. all_cls_preds.append(cls_pred)
  176. all_reg_preds.append(reg_pred)
  177. all_anchors.append(anchors)
  178. # post process
  179. bboxes, scores, labels = self.post_process(
  180. all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
  181. return bboxes, scores, labels
  182. def forward(self, x):
  183. if not self.trainable:
  184. return self.inference_single_image(x)
  185. else:
  186. # backbone
  187. pyramid_feats = self.backbone(x)
  188. # fpn
  189. pyramid_feats = self.fpn(pyramid_feats)
  190. # non-shared heads
  191. all_anchors = []
  192. all_obj_preds = []
  193. all_cls_preds = []
  194. all_box_preds = []
  195. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  196. cls_feat, reg_feat = head(feat)
  197. # [B, C, H, W]
  198. obj_pred = self.obj_preds[level](reg_feat)
  199. cls_pred = self.cls_preds[level](cls_feat)
  200. reg_pred = self.reg_preds[level](reg_feat)
  201. B, _, H, W = cls_pred.size()
  202. fmp_size = [H, W]
  203. # generate anchor boxes: [M, 4]
  204. anchors = self.generate_anchors(level, fmp_size)
  205. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  206. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  207. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  208. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  209. # decode box: [M, 4]
  210. box_pred = self.decode_boxes(anchors, reg_pred, self.stride[level])
  211. all_obj_preds.append(obj_pred)
  212. all_cls_preds.append(cls_pred)
  213. all_box_preds.append(box_pred)
  214. all_anchors.append(anchors)
  215. # output dict
  216. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  217. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  218. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  219. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  220. 'strides': self.stride} # List(Int) [8, 16, 32]
  221. return outputs