yolox_config.py 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. # YOLOx Config
  2. yolox_cfg = {
  3. 'yolox_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. ## FPN
  15. 'fpn': 'yolov5_pafpn',
  16. 'fpn_reduce_layer': 'Conv',
  17. 'fpn_downsample_layer': 'Conv',
  18. 'fpn_core_block': 'CSPBlock',
  19. 'fpn_act': 'silu',
  20. 'fpn_norm': 'BN',
  21. 'fpn_depthwise': False,
  22. ## Head
  23. 'head': 'decoupled_head',
  24. 'head_act': 'silu',
  25. 'head_norm': 'BN',
  26. 'num_cls_head': 2,
  27. 'num_reg_head': 2,
  28. 'head_depthwise': False,
  29. # ---------------- Train config ----------------
  30. ## input
  31. 'multi_scale': [0.5, 1.5], # 320 -> 960
  32. 'trans_type': 'yolox_tiny',
  33. # ---------------- Assignment config ----------------
  34. ## matcher
  35. 'matcher': {'center_sampling_radius': 2.5,
  36. 'topk_candicate': 10},
  37. # ---------------- Loss config ----------------
  38. ## loss weight
  39. 'loss_obj_weight': 1.0,
  40. 'loss_cls_weight': 1.0,
  41. 'loss_box_weight': 5.0,
  42. # ---------------- Train config ----------------
  43. ## close strong augmentation
  44. 'no_aug_epoch': 20,
  45. ## optimizer
  46. 'optimizer': 'sgd', # optional: sgd, AdamW
  47. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  48. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  49. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  50. ## model EMA
  51. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  52. 'ema_tau': 2000,
  53. ## lr schedule
  54. 'scheduler': 'linear',
  55. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  56. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  57. 'warmup_momentum': 0.8,
  58. 'warmup_bias_lr': 0.1,
  59. },
  60. 'yolox_s':{
  61. # ---------------- Model config ----------------
  62. ## Backbone
  63. 'backbone': 'cspdarknet',
  64. 'pretrained': True,
  65. 'bk_act': 'silu',
  66. 'bk_norm': 'BN',
  67. 'bk_dpw': False,
  68. 'width': 0.50,
  69. 'depth': 0.34,
  70. 'stride': [8, 16, 32], # P3, P4, P5
  71. ## FPN
  72. 'fpn': 'yolov5_pafpn',
  73. 'fpn_reduce_layer': 'Conv',
  74. 'fpn_downsample_layer': 'Conv',
  75. 'fpn_core_block': 'CSPBlock',
  76. 'fpn_act': 'silu',
  77. 'fpn_norm': 'BN',
  78. 'fpn_depthwise': False,
  79. ## Head
  80. 'head': 'decoupled_head',
  81. 'head_act': 'silu',
  82. 'head_norm': 'BN',
  83. 'num_cls_head': 2,
  84. 'num_reg_head': 2,
  85. 'head_depthwise': False,
  86. # ---------------- Train config ----------------
  87. ## input
  88. 'multi_scale': [0.5, 1.5], # 320 -> 960
  89. 'trans_type': 'yolox_small',
  90. # ---------------- Assignment config ----------------
  91. ## matcher
  92. 'matcher': {'center_sampling_radius': 2.5,
  93. 'topk_candicate': 10},
  94. # ---------------- Loss config ----------------
  95. ## loss weight
  96. 'loss_obj_weight': 1.0,
  97. 'loss_cls_weight': 1.0,
  98. 'loss_box_weight': 5.0,
  99. # ---------------- Train config ----------------
  100. ## close strong augmentation
  101. 'no_aug_epoch': 20,
  102. ## optimizer
  103. 'optimizer': 'sgd', # optional: sgd, AdamW
  104. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  105. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  106. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  107. ## model EMA
  108. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  109. 'ema_tau': 2000,
  110. ## lr schedule
  111. 'scheduler': 'linear',
  112. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  113. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  114. 'warmup_momentum': 0.8,
  115. 'warmup_bias_lr': 0.1,
  116. },
  117. 'yolox_m':{
  118. # ---------------- Model config ----------------
  119. ## Backbone
  120. 'backbone': 'cspdarknet',
  121. 'pretrained': True,
  122. 'bk_act': 'silu',
  123. 'bk_norm': 'BN',
  124. 'bk_dpw': False,
  125. 'width': 0.75,
  126. 'depth': 0.67,
  127. 'stride': [8, 16, 32], # P3, P4, P5
  128. ## FPN
  129. 'fpn': 'yolov5_pafpn',
  130. 'fpn_reduce_layer': 'Conv',
  131. 'fpn_downsample_layer': 'Conv',
  132. 'fpn_core_block': 'CSPBlock',
  133. 'fpn_act': 'silu',
  134. 'fpn_norm': 'BN',
  135. 'fpn_depthwise': False,
  136. ## Head
  137. 'head': 'decoupled_head',
  138. 'head_act': 'silu',
  139. 'head_norm': 'BN',
  140. 'num_cls_head': 2,
  141. 'num_reg_head': 2,
  142. 'head_depthwise': False,
  143. # ---------------- Train config ----------------
  144. ## input
  145. 'multi_scale': [0.5, 1.5], # 320 -> 960
  146. 'trans_type': 'yolox_medium',
  147. # ---------------- Assignment config ----------------
  148. ## matcher
  149. 'matcher': {'center_sampling_radius': 2.5,
  150. 'topk_candicate': 10},
  151. # ---------------- Loss config ----------------
  152. ## loss weight
  153. 'loss_obj_weight': 1.0,
  154. 'loss_cls_weight': 1.0,
  155. 'loss_box_weight': 5.0,
  156. # ---------------- Train config ----------------
  157. ## close strong augmentation
  158. 'no_aug_epoch': 20,
  159. ## optimizer
  160. 'optimizer': 'sgd', # optional: sgd, AdamW
  161. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  162. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  163. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  164. ## model EMA
  165. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  166. 'ema_tau': 2000,
  167. ## lr schedule
  168. 'scheduler': 'linear',
  169. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  170. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  171. 'warmup_momentum': 0.8,
  172. 'warmup_bias_lr': 0.1,
  173. },
  174. 'yolox_l':{
  175. # ---------------- Model config ----------------
  176. ## Backbone
  177. 'backbone': 'cspdarknet',
  178. 'pretrained': False,
  179. 'bk_act': 'silu',
  180. 'bk_norm': 'BN',
  181. 'bk_dpw': False,
  182. 'width': 1.0,
  183. 'depth': 1.0,
  184. 'stride': [8, 16, 32], # P3, P4, P5
  185. ## FPN
  186. 'fpn': 'yolov5_pafpn',
  187. 'fpn_reduce_layer': 'Conv',
  188. 'fpn_downsample_layer': 'Conv',
  189. 'fpn_core_block': 'CSPBlock',
  190. 'fpn_act': 'silu',
  191. 'fpn_norm': 'BN',
  192. 'fpn_depthwise': False,
  193. ## Head
  194. 'head': 'decoupled_head',
  195. 'head_act': 'silu',
  196. 'head_norm': 'BN',
  197. 'num_cls_head': 2,
  198. 'num_reg_head': 2,
  199. 'head_depthwise': False,
  200. # ---------------- Train config ----------------
  201. ## input
  202. 'multi_scale': [0.5, 1.25], # 320 -> 800
  203. 'trans_type': 'yolox_large',
  204. # ---------------- Assignment config ----------------
  205. ## matcher
  206. 'matcher': {'center_sampling_radius': 2.5,
  207. 'topk_candicate': 10},
  208. # ---------------- Loss config ----------------
  209. ## loss weight
  210. 'loss_obj_weight': 1.0,
  211. 'loss_cls_weight': 1.0,
  212. 'loss_box_weight': 5.0,
  213. # ---------------- Train config ----------------
  214. ## close strong augmentation
  215. 'no_aug_epoch': 20,
  216. ## optimizer
  217. 'optimizer': 'sgd', # optional: sgd, AdamW
  218. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  219. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  220. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  221. ## model EMA
  222. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  223. 'ema_tau': 2000,
  224. ## lr schedule
  225. 'scheduler': 'linear',
  226. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  227. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  228. 'warmup_momentum': 0.8,
  229. 'warmup_bias_lr': 0.1,
  230. },
  231. 'yolox_x':{
  232. # ---------------- Model config ----------------
  233. ## Backbone
  234. 'backbone': 'cspdarknet',
  235. 'pretrained': True,
  236. 'bk_act': 'silu',
  237. 'bk_norm': 'BN',
  238. 'bk_dpw': False,
  239. 'width': 1.25,
  240. 'depth': 1.34,
  241. 'stride': [8, 16, 32], # P3, P4, P5
  242. ## FPN
  243. 'fpn': 'yolov5_pafpn',
  244. 'fpn_reduce_layer': 'Conv',
  245. 'fpn_downsample_layer': 'Conv',
  246. 'fpn_core_block': 'CSPBlock',
  247. 'fpn_act': 'silu',
  248. 'fpn_norm': 'BN',
  249. 'fpn_depthwise': False,
  250. ## Head
  251. 'head': 'decoupled_head',
  252. 'head_act': 'silu',
  253. 'head_norm': 'BN',
  254. 'num_cls_head': 2,
  255. 'num_reg_head': 2,
  256. 'head_depthwise': False,
  257. # ---------------- Train config ----------------
  258. ## input
  259. 'multi_scale': [0.5, 1.25], # 320 -> 800
  260. 'trans_type': 'yolox_huge',
  261. # ---------------- Assignment config ----------------
  262. ## matcher
  263. 'matcher': {'center_sampling_radius': 2.5,
  264. 'topk_candicate': 10},
  265. # ---------------- Loss config ----------------
  266. ## loss weight
  267. 'loss_obj_weight': 1.0,
  268. 'loss_cls_weight': 1.0,
  269. 'loss_box_weight': 5.0,
  270. # ---------------- Train config ----------------
  271. ## close strong augmentation
  272. 'no_aug_epoch': 20,
  273. ## optimizer
  274. 'optimizer': 'sgd', # optional: sgd, AdamW
  275. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  276. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  277. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  278. ## model EMA
  279. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  280. 'ema_tau': 2000,
  281. ## lr schedule
  282. 'scheduler': 'linear',
  283. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  284. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  285. 'warmup_momentum': 0.8,
  286. 'warmup_bias_lr': 0.1,
  287. },
  288. }