rtcdet.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. # Real-time Convolutional Object Detector
  2. # --------------- Torch components ---------------
  3. import torch
  4. import torch.nn as nn
  5. # --------------- Model components ---------------
  6. from .rtcdet_backbone import build_backbone
  7. from .rtcdet_neck import build_neck
  8. from .rtcdet_pafpn import build_fpn
  9. from .rtcdet_head import build_det_head, build_seg_head, build_pose_head
  10. from .rtcdet_pred import build_det_pred, build_seg_pred, build_pose_pred
  11. # --------------- External components ---------------
  12. from utils.misc import multiclass_nms
  13. # Real-time Convolutional General Object Detector
  14. class RTCDet(nn.Module):
  15. def __init__(self,
  16. cfg,
  17. device,
  18. num_classes = 20,
  19. conf_thresh = 0.01,
  20. nms_thresh = 0.5,
  21. topk = 1000,
  22. trainable = False,
  23. deploy = False,
  24. no_multi_labels = False,
  25. nms_class_agnostic = False,
  26. ):
  27. super(RTCDet, self).__init__()
  28. # ---------------- Basic settings ----------------
  29. ## Basic parameters
  30. self.cfg = cfg
  31. self.device = device
  32. self.deploy = deploy
  33. self.trainable = trainable
  34. self.num_classes = num_classes
  35. ## Network parameters
  36. self.strides = cfg['stride']
  37. self.num_levels = len(self.strides)
  38. self.head_dim = round(256 * cfg['width'])
  39. ## Post-process parameters
  40. self.nms_thresh = nms_thresh
  41. self.conf_thresh = conf_thresh
  42. self.topk_candidates = topk
  43. self.no_multi_labels = no_multi_labels
  44. self.nms_class_agnostic = nms_class_agnostic
  45. # ---------------- Network settings ----------------
  46. ## Backbone
  47. self.backbone, self.fpn_feat_dims = build_backbone(cfg, pretrained=cfg['bk_pretrained']&trainable)
  48. ## Neck: SPP
  49. self.neck = build_neck(cfg, self.fpn_feat_dims[-1], self.fpn_feat_dims[-1])
  50. self.fpn_feat_dims[-1] = self.neck.out_dim
  51. ## Neck: FPN
  52. self.fpn = build_fpn(cfg, self.fpn_feat_dims, self.head_dim)
  53. self.fpn_dims = self.fpn.out_dim
  54. ## Head
  55. self.det_head = nn.Sequential(
  56. build_det_head(cfg['det_head'], self.fpn_dims, self.head_dim, self.num_levels),
  57. build_det_pred(self.head_dim, self.head_dim, self.strides, num_classes, 4, self.num_levels)
  58. )
  59. self.seg_head = nn.Sequential(
  60. build_seg_head(cfg['seg_head']),
  61. build_seg_pred()
  62. ) if cfg['seg_head']['name'] is not None else None
  63. self.pos_head = nn.Sequential(
  64. build_pose_head(cfg['pos_head']),
  65. build_pose_pred()
  66. ) if cfg['pos_head']['name'] is not None else None
  67. # Post process
  68. def post_process(self, cls_preds, box_preds):
  69. """
  70. Input:
  71. cls_preds: List[np.array] -> [[M, C], ...]
  72. box_preds: List[np.array] -> [[M, 4], ...]
  73. Output:
  74. bboxes: np.array -> [N, 4]
  75. scores: np.array -> [N,]
  76. labels: np.array -> [N,]
  77. """
  78. assert len(cls_preds) == self.num_levels
  79. all_scores = []
  80. all_labels = []
  81. all_bboxes = []
  82. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  83. cls_pred_i = cls_pred_i[0]
  84. box_pred_i = box_pred_i[0]
  85. if self.no_multi_labels:
  86. # [M,]
  87. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  88. # Keep top k top scoring indices only.
  89. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  90. # topk candidates
  91. predicted_prob, topk_idxs = scores.sort(descending=True)
  92. topk_scores = predicted_prob[:num_topk]
  93. topk_idxs = topk_idxs[:num_topk]
  94. # filter out the proposals with low confidence score
  95. keep_idxs = topk_scores > self.conf_thresh
  96. scores = topk_scores[keep_idxs]
  97. topk_idxs = topk_idxs[keep_idxs]
  98. labels = labels[topk_idxs]
  99. bboxes = box_pred_i[topk_idxs]
  100. else:
  101. # [M, C] -> [MC,]
  102. scores_i = cls_pred_i.sigmoid().flatten()
  103. # Keep top k top scoring indices only.
  104. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  105. # torch.sort is actually faster than .topk (at least on GPUs)
  106. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  107. topk_scores = predicted_prob[:num_topk]
  108. topk_idxs = topk_idxs[:num_topk]
  109. # filter out the proposals with low confidence score
  110. keep_idxs = topk_scores > self.conf_thresh
  111. scores = topk_scores[keep_idxs]
  112. topk_idxs = topk_idxs[keep_idxs]
  113. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  114. labels = topk_idxs % self.num_classes
  115. bboxes = box_pred_i[anchor_idxs]
  116. all_scores.append(scores)
  117. all_labels.append(labels)
  118. all_bboxes.append(bboxes)
  119. scores = torch.cat(all_scores, dim=0)
  120. labels = torch.cat(all_labels, dim=0)
  121. bboxes = torch.cat(all_bboxes, dim=0)
  122. # to cpu & numpy
  123. scores = scores.cpu().numpy()
  124. labels = labels.cpu().numpy()
  125. bboxes = bboxes.cpu().numpy()
  126. # nms
  127. scores, labels, bboxes = multiclass_nms(
  128. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  129. return bboxes, scores, labels
  130. # Main process
  131. def forward(self, x):
  132. # ---------------- Backbone ----------------
  133. pyramid_feats = self.backbone(x)
  134. # ---------------- Neck: SPP ----------------
  135. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  136. # ---------------- Neck: PaFPN ----------------
  137. pyramid_feats = self.fpn(pyramid_feats)
  138. # ---------------- Head ----------------
  139. det_outpus = self.forward_det_head(pyramid_feats)
  140. seg_outpus = self.forward_seg_head(pyramid_feats)
  141. pos_outpus = self.forward_pos_head(pyramid_feats)
  142. outputs = {
  143. 'det_outputs': det_outpus,
  144. 'seg_outputs': seg_outpus,
  145. 'pos_outputs': pos_outpus
  146. }
  147. if not self.trainable:
  148. if seg_outpus is not None:
  149. det_outpus.update(seg_outpus)
  150. if pos_outpus is not None:
  151. det_outpus.update(pos_outpus)
  152. outputs = det_outpus
  153. else:
  154. outputs = {
  155. 'det_outputs': det_outpus,
  156. 'seg_outputs': seg_outpus,
  157. 'pos_outputs': pos_outpus
  158. }
  159. return outputs
  160. def forward_det_head(self, x):
  161. # ---------------- Heads ----------------
  162. outputs = self.det_head(x)
  163. # ---------------- Post-process ----------------
  164. if not self.trainable:
  165. all_cls_preds = outputs['pred_cls']
  166. all_box_preds = outputs['pred_box']
  167. if self.deploy:
  168. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  169. box_preds = torch.cat(all_box_preds, dim=1)[0]
  170. scores = cls_preds.sigmoid()
  171. bboxes = box_preds
  172. # [n_anchors_all, 4 + C]
  173. outputs = torch.cat([bboxes, scores], dim=-1)
  174. else:
  175. # post process
  176. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  177. outputs = {
  178. "scores": scores,
  179. "labels": labels,
  180. "bboxes": bboxes
  181. }
  182. return outputs
  183. def forward_seg_head(self, x):
  184. if self.seg_head is None:
  185. return None
  186. def forward_pos_head(self, x):
  187. if self.pos_head is None:
  188. return None