loss.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import AlignedSimOTA
  6. class Criterion(object):
  7. def __init__(self, args, cfg, device, num_classes=80):
  8. self.args = args
  9. self.cfg = cfg
  10. self.device = device
  11. self.num_classes = num_classes
  12. self.max_epoch = args.max_epoch
  13. self.no_aug_epoch = args.no_aug_epoch
  14. self.aux_bbox_loss = cfg['loss_box_aux']
  15. # --------------- Loss config ---------------
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. # --------------- Matcher config ---------------
  19. self.matcher_hpy = cfg['matcher_hpy']
  20. self.matcher = AlignedSimOTA(soft_center_radius = self.matcher_hpy['soft_center_radius'],
  21. topk_candidates = self.matcher_hpy['topk_candidates'],
  22. num_classes = num_classes,
  23. )
  24. # -------------------- Basic loss functions --------------------
  25. def loss_classes(self, pred_cls, target, beta=2.0):
  26. # Quality FocalLoss
  27. """
  28. pred_cls: (torch.Tensor): [N, C]。
  29. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  30. """
  31. label, score = target
  32. pred_sigmoid = pred_cls.sigmoid()
  33. scale_factor = pred_sigmoid
  34. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  35. ce_loss = F.binary_cross_entropy_with_logits(
  36. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  37. bg_class_ind = pred_cls.shape[-1]
  38. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  39. pos_label = label[pos].long()
  40. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  41. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  42. pred_cls[pos, pos_label], score[pos],
  43. reduction='none') * scale_factor.abs().pow(beta)
  44. return ce_loss
  45. def loss_bboxes(self, pred_box, gt_box):
  46. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  47. loss_box = 1.0 - ious
  48. return loss_box
  49. def loss_bboxes_aux(self, pred_reg, gt_box, anchors, stride_tensors):
  50. # xyxy -> cxcy&bwbh
  51. gt_cxcy = (gt_box[..., :2] + gt_box[..., 2:]) * 0.5
  52. gt_bwbh = gt_box[..., 2:] - gt_box[..., :2]
  53. # encode gt box
  54. gt_cxcy_encode = (gt_cxcy - anchors) / stride_tensors
  55. gt_bwbh_encode = torch.log(gt_bwbh / stride_tensors)
  56. gt_box_encode = torch.cat([gt_cxcy_encode, gt_bwbh_encode], dim=-1)
  57. # l1 loss
  58. loss_box_aux = F.l1_loss(pred_reg, gt_box_encode, reduction='none')
  59. return loss_box_aux
  60. # -------------------- Task loss functions --------------------
  61. def compute_det_loss(self, outputs, targets, epoch=0):
  62. """
  63. Input:
  64. outputs: (Dict) -> {
  65. 'pred_cls': (List[torch.Tensor] -> [B, M, Nc]),
  66. 'pred_reg': (List[torch.Tensor] -> [B, M, 4]),
  67. 'pred_box': (List[torch.Tensor] -> [B, M, 4]),
  68. 'strides': (List[Int])
  69. }
  70. target: (List[Dict]) [
  71. {'boxes': (torch.Tensor) -> [N, 4],
  72. 'labels': (torch.Tensor) -> [N,],
  73. ...}, ...
  74. ]
  75. Output:
  76. loss_dict: (Dict) -> {
  77. 'loss_cls': (torch.Tensor) It is a scalar.),
  78. 'loss_box': (torch.Tensor) It is a scalar.),
  79. 'loss_box_aux': (torch.Tensor) It is a scalar.),
  80. 'losses': (torch.Tensor) It is a scalar.),
  81. }
  82. """
  83. bs = outputs['pred_cls'][0].shape[0]
  84. device = outputs['pred_cls'][0].device
  85. fpn_strides = outputs['strides']
  86. anchors = outputs['anchors']
  87. # preds: [B, M, C]
  88. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  89. box_preds = torch.cat(outputs['pred_box'], dim=1)
  90. # --------------- label assignment ---------------
  91. cls_targets = []
  92. box_targets = []
  93. assign_metrics = []
  94. for batch_idx in range(bs):
  95. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  96. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  97. assigned_result = self.matcher(fpn_strides=fpn_strides,
  98. anchors=anchors,
  99. pred_cls=cls_preds[batch_idx].detach(),
  100. pred_box=box_preds[batch_idx].detach(),
  101. gt_labels=tgt_labels,
  102. gt_bboxes=tgt_bboxes
  103. )
  104. cls_targets.append(assigned_result['assigned_labels'])
  105. box_targets.append(assigned_result['assigned_bboxes'])
  106. assign_metrics.append(assigned_result['assign_metrics'])
  107. # List[B, M, C] -> Tensor[BM, C]
  108. cls_targets = torch.cat(cls_targets, dim=0)
  109. box_targets = torch.cat(box_targets, dim=0)
  110. assign_metrics = torch.cat(assign_metrics, dim=0)
  111. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
  112. bg_class_ind = self.num_classes
  113. pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
  114. num_fgs = assign_metrics.sum()
  115. if is_dist_avail_and_initialized():
  116. torch.distributed.all_reduce(num_fgs)
  117. num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
  118. # ------------------ Classification loss ------------------
  119. cls_preds = cls_preds.view(-1, self.num_classes)
  120. loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics))
  121. loss_cls = loss_cls.sum() / num_fgs
  122. # ------------------ Regression loss ------------------
  123. box_preds_pos = box_preds.view(-1, 4)[pos_inds]
  124. box_targets_pos = box_targets[pos_inds]
  125. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
  126. loss_box = loss_box.sum() / num_fgs
  127. # total loss
  128. losses = self.loss_cls_weight * loss_cls + \
  129. self.loss_box_weight * loss_box
  130. # ------------------ Aux regression loss ------------------
  131. loss_box_aux = None
  132. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.aux_bbox_loss:
  133. ## reg_preds
  134. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  135. reg_preds_pos = reg_preds.view(-1, 4)[pos_inds]
  136. ## anchor tensors
  137. anchors_tensors = torch.cat(outputs['anchors'], dim=0)[None].repeat(bs, 1, 1)
  138. anchors_tensors_pos = anchors_tensors.view(-1, 2)[pos_inds]
  139. ## stride tensors
  140. stride_tensors = torch.cat(outputs['stride_tensors'], dim=0)[None].repeat(bs, 1, 1)
  141. stride_tensors_pos = stride_tensors.view(-1, 1)[pos_inds]
  142. ## aux loss
  143. loss_box_aux = self.loss_bboxes_aux(reg_preds_pos, box_targets_pos, anchors_tensors_pos, stride_tensors_pos)
  144. loss_box_aux = loss_box_aux.sum() / num_fgs
  145. losses += loss_box_aux
  146. # Loss dict
  147. if loss_box_aux is None:
  148. loss_dict = dict(
  149. loss_cls = loss_cls,
  150. loss_box = loss_box,
  151. losses = losses
  152. )
  153. else:
  154. loss_dict = dict(
  155. loss_cls = loss_cls,
  156. loss_box = loss_box,
  157. loss_box_aux = loss_box_aux,
  158. losses = losses
  159. )
  160. return loss_dict
  161. def compute_seg_loss(self, outputs, targets, epoch=0):
  162. """
  163. Input:
  164. outputs: (Dict) -> {
  165. 'pred_cls': (List[torch.Tensor] -> [B, M, Nc]),
  166. 'pred_reg': (List[torch.Tensor] -> [B, M, 4]),
  167. 'pred_box': (List[torch.Tensor] -> [B, M, 4]),
  168. 'strides': (List[Int])
  169. }
  170. target: (List[Dict]) [
  171. {'boxes': (torch.Tensor) -> [N, 4],
  172. 'labels': (torch.Tensor) -> [N,],
  173. ...}, ...
  174. ]
  175. Output:
  176. loss_dict: (Dict) -> {
  177. 'loss_cls': (torch.Tensor) It is a scalar.),
  178. 'loss_box': (torch.Tensor) It is a scalar.),
  179. 'loss_box_aux': (torch.Tensor) It is a scalar.),
  180. 'losses': (torch.Tensor) It is a scalar.),
  181. }
  182. """
  183. def compute_pos_loss(self, outputs, targets, epoch=0):
  184. """
  185. Input:
  186. outputs: (Dict) -> {
  187. 'pred_cls': (List[torch.Tensor] -> [B, M, Nc]),
  188. 'pred_reg': (List[torch.Tensor] -> [B, M, 4]),
  189. 'pred_box': (List[torch.Tensor] -> [B, M, 4]),
  190. 'strides': (List[Int])
  191. }
  192. target: (List[Dict]) [
  193. {'boxes': (torch.Tensor) -> [N, 4],
  194. 'labels': (torch.Tensor) -> [N,],
  195. ...}, ...
  196. ]
  197. Output:
  198. loss_dict: (Dict) -> {
  199. 'loss_cls': (torch.Tensor) It is a scalar.),
  200. 'loss_box': (torch.Tensor) It is a scalar.),
  201. 'loss_box_aux': (torch.Tensor) It is a scalar.),
  202. 'losses': (torch.Tensor) It is a scalar.),
  203. }
  204. """
  205. def __call__(self, outputs, targets, epoch=0, task='det'):
  206. # -------------- Detection loss --------------
  207. det_loss_dict = None
  208. if outputs['det_outputs'] is not None:
  209. det_loss_dict = self.compute_det_loss(outputs['det_outputs'], targets, epoch)
  210. # -------------- Segmentation loss --------------
  211. seg_loss_dict = None
  212. if outputs['seg_outputs'] is not None:
  213. seg_loss_dict = self.compute_seg_loss(outputs['seg_outputs'], targets, epoch)
  214. # -------------- Human pose loss --------------
  215. pos_loss_dict = None
  216. if outputs['pos_outputs'] is not None:
  217. pos_loss_dict = self.compute_seg_loss(outputs['pos_outputs'], targets, epoch)
  218. # Loss dict
  219. if task == 'det':
  220. return det_loss_dict
  221. if task == 'det_seg':
  222. return {'det_loss_dict': det_loss_dict,
  223. 'seg_loss_dict': seg_loss_dict}
  224. if task == 'det_pos':
  225. return {'det_loss_dict': det_loss_dict,
  226. 'pos_loss_dict': pos_loss_dict}
  227. if task == 'det_seg_pos':
  228. return {'det_loss_dict': det_loss_dict,
  229. 'seg_loss_dict': seg_loss_dict,
  230. 'pos_loss_dict': pos_loss_dict}
  231. def build_criterion(args, cfg, device, num_classes):
  232. criterion = Criterion(args, cfg, device, num_classes)
  233. return criterion
  234. if __name__ == "__main__":
  235. pass