ctrnet_basic.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torchvision.ops
  5. # --------------------- Basic modules ---------------------
  6. def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
  7. conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
  8. return conv
  9. def get_activation(act_type=None):
  10. if act_type == 'relu':
  11. return nn.ReLU(inplace=True)
  12. elif act_type == 'lrelu':
  13. return nn.LeakyReLU(0.1, inplace=True)
  14. elif act_type == 'mish':
  15. return nn.Mish(inplace=True)
  16. elif act_type == 'silu':
  17. return nn.SiLU(inplace=True)
  18. elif act_type is None:
  19. return nn.Identity()
  20. else:
  21. raise NotImplementedError
  22. def get_norm(norm_type, dim):
  23. if norm_type == 'BN':
  24. return nn.BatchNorm2d(dim)
  25. elif norm_type == 'GN':
  26. return nn.GroupNorm(num_groups=32, num_channels=dim)
  27. elif norm_type is None:
  28. return nn.Identity()
  29. else:
  30. raise NotImplementedError
  31. class Conv(nn.Module):
  32. def __init__(self,
  33. c1, # in channels
  34. c2, # out channels
  35. k=1, # kernel size
  36. p=0, # padding
  37. s=1, # padding
  38. d=1, # dilation
  39. act_type='lrelu', # activation
  40. norm_type='BN', # normalization
  41. depthwise=False):
  42. super(Conv, self).__init__()
  43. convs = []
  44. add_bias = False if norm_type else True
  45. if depthwise:
  46. convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
  47. # depthwise conv
  48. if norm_type:
  49. convs.append(get_norm(norm_type, c1))
  50. if act_type:
  51. convs.append(get_activation(act_type))
  52. # pointwise conv
  53. convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
  54. if norm_type:
  55. convs.append(get_norm(norm_type, c2))
  56. if act_type:
  57. convs.append(get_activation(act_type))
  58. else:
  59. convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
  60. if norm_type:
  61. convs.append(get_norm(norm_type, c2))
  62. if act_type:
  63. convs.append(get_activation(act_type))
  64. self.convs = nn.Sequential(*convs)
  65. def forward(self, x):
  66. return self.convs(x)
  67. class DeConv(nn.Module):
  68. def __init__(self,
  69. in_dim :int,
  70. out_dim :int,
  71. kernel_size :int = 4,
  72. stride :int = 2,
  73. act_type :str = 'silu',
  74. norm_type :str = 'BN'
  75. ):
  76. super(DeConv, self).__init__()
  77. # ----------- Basic parameters -----------
  78. if kernel_size == 4:
  79. padding = 1
  80. output_padding = 0
  81. elif kernel_size == 3:
  82. padding = 1
  83. output_padding = 1
  84. elif kernel_size == 2:
  85. padding = 0
  86. output_padding = 0
  87. # ----------- Network parameters -----------
  88. self.convs = nn.Sequential(
  89. nn.ConvTranspose2d(in_dim, out_dim, kernel_size, stride=stride, padding=padding, output_padding=output_padding),
  90. get_norm(norm_type, out_dim),
  91. get_activation(act_type)
  92. )
  93. def forward(self, x):
  94. return self.convs(x)
  95. class DeformableConv(nn.Module):
  96. def __init__(self,
  97. in_dim :int,
  98. out_dim :int,
  99. kernel_size :int = 3,
  100. stride :int = 1,
  101. padding :int = 1):
  102. super(DeformableConv, self).__init__()
  103. self.in_dim = in_dim
  104. self.out_dim = out_dim
  105. self.kernel_size = kernel_size
  106. self.stride = stride if type(stride) == tuple else (stride, stride)
  107. self.padding = padding
  108. # init weight and bias
  109. self.weight = nn.Parameter(torch.Tensor(out_dim, in_dim, kernel_size, kernel_size))
  110. self.bias = nn.Parameter(torch.Tensor(out_dim))
  111. # offset conv
  112. self.conv_offset_mask = nn.Conv2d(in_dim,
  113. 3 * kernel_size * kernel_size,
  114. kernel_size=kernel_size,
  115. stride=stride,
  116. padding=self.padding,
  117. bias=True)
  118. # init
  119. self.reset_parameters()
  120. self._init_weight()
  121. def reset_parameters(self):
  122. n = self.in_dim * (self.kernel_size**2)
  123. stdv = 1. / math.sqrt(n)
  124. self.weight.data.uniform_(-stdv, stdv)
  125. self.bias.data.zero_()
  126. def _init_weight(self):
  127. # init offset_mask conv
  128. nn.init.constant_(self.conv_offset_mask.weight, 0.)
  129. nn.init.constant_(self.conv_offset_mask.bias, 0.)
  130. def forward(self, x):
  131. out = self.conv_offset_mask(x)
  132. o1, o2, mask = torch.chunk(out, 3, dim=1)
  133. offset = torch.cat((o1, o2), dim=1)
  134. mask = torch.sigmoid(mask)
  135. x = torchvision.ops.deform_conv2d(input=x,
  136. offset=offset,
  137. weight=self.weight,
  138. bias=self.bias,
  139. padding=self.padding,
  140. mask=mask,
  141. stride=self.stride)
  142. return x
  143. # --------------------- Yolov8 modules ---------------------
  144. ## Yolov8-style BottleNeck
  145. class Bottleneck(nn.Module):
  146. def __init__(self,
  147. in_dim,
  148. out_dim,
  149. expand_ratio = 0.5,
  150. kernel_sizes = [3, 3],
  151. shortcut = True,
  152. act_type = 'silu',
  153. norm_type = 'BN',
  154. depthwise = False,):
  155. super(Bottleneck, self).__init__()
  156. inter_dim = int(out_dim * expand_ratio) # hidden channels
  157. self.cv1 = Conv(in_dim, inter_dim, k=kernel_sizes[0], p=kernel_sizes[0]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
  158. self.cv2 = Conv(inter_dim, out_dim, k=kernel_sizes[1], p=kernel_sizes[1]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
  159. self.shortcut = shortcut and in_dim == out_dim
  160. def forward(self, x):
  161. h = self.cv2(self.cv1(x))
  162. return x + h if self.shortcut else h
  163. # Yolov8-style StageBlock
  164. class RTCBlock(nn.Module):
  165. def __init__(self,
  166. in_dim,
  167. out_dim,
  168. num_blocks = 1,
  169. shortcut = False,
  170. act_type = 'silu',
  171. norm_type = 'BN',
  172. depthwise = False,):
  173. super(RTCBlock, self).__init__()
  174. self.inter_dim = out_dim // 2
  175. self.input_proj = Conv(in_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
  176. self.m = nn.Sequential(*(
  177. Bottleneck(self.inter_dim, self.inter_dim, 1.0, [3, 3], shortcut, act_type, norm_type, depthwise)
  178. for _ in range(num_blocks)))
  179. self.output_proj = Conv((2 + num_blocks) * self.inter_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
  180. def forward(self, x):
  181. # Input proj
  182. x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1)
  183. out = list([x1, x2])
  184. # Bottlenecl
  185. out.extend(m(out[-1]) for m in self.m)
  186. # Output proj
  187. out = self.output_proj(torch.cat(out, dim=1))
  188. return out