| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- import math
- import torch
- import torch.nn as nn
- import torchvision.ops
- # --------------------- Basic modules ---------------------
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
-
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- class Conv(nn.Module):
- def __init__(self,
- c1, # in channels
- c2, # out channels
- k=1, # kernel size
- p=0, # padding
- s=1, # padding
- d=1, # dilation
- act_type='lrelu', # activation
- norm_type='BN', # normalization
- depthwise=False):
- super(Conv, self).__init__()
- convs = []
- add_bias = False if norm_type else True
- if depthwise:
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
- # depthwise conv
- if norm_type:
- convs.append(get_norm(norm_type, c1))
- if act_type:
- convs.append(get_activation(act_type))
- # pointwise conv
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
- else:
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
-
- self.convs = nn.Sequential(*convs)
- def forward(self, x):
- return self.convs(x)
- class DeConv(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- kernel_size :int = 4,
- stride :int = 2,
- act_type :str = 'silu',
- norm_type :str = 'BN'
- ):
- super(DeConv, self).__init__()
- # ----------- Basic parameters -----------
- if kernel_size == 4:
- padding = 1
- output_padding = 0
- elif kernel_size == 3:
- padding = 1
- output_padding = 1
- elif kernel_size == 2:
- padding = 0
- output_padding = 0
- # ----------- Network parameters -----------
- self.convs = nn.Sequential(
- nn.ConvTranspose2d(in_dim, out_dim, kernel_size, stride=stride, padding=padding, output_padding=output_padding),
- get_norm(norm_type, out_dim),
- get_activation(act_type)
- )
- def forward(self, x):
- return self.convs(x)
-
- class DeformableConv(nn.Module):
- def __init__(self,
- in_dim :int,
- out_dim :int,
- kernel_size :int = 3,
- stride :int = 1,
- padding :int = 1):
- super(DeformableConv, self).__init__()
- self.in_dim = in_dim
- self.out_dim = out_dim
- self.kernel_size = kernel_size
- self.stride = stride if type(stride) == tuple else (stride, stride)
- self.padding = padding
-
- # init weight and bias
- self.weight = nn.Parameter(torch.Tensor(out_dim, in_dim, kernel_size, kernel_size))
- self.bias = nn.Parameter(torch.Tensor(out_dim))
- # offset conv
- self.conv_offset_mask = nn.Conv2d(in_dim,
- 3 * kernel_size * kernel_size,
- kernel_size=kernel_size,
- stride=stride,
- padding=self.padding,
- bias=True)
-
- # init
- self.reset_parameters()
- self._init_weight()
- def reset_parameters(self):
- n = self.in_dim * (self.kernel_size**2)
- stdv = 1. / math.sqrt(n)
- self.weight.data.uniform_(-stdv, stdv)
- self.bias.data.zero_()
- def _init_weight(self):
- # init offset_mask conv
- nn.init.constant_(self.conv_offset_mask.weight, 0.)
- nn.init.constant_(self.conv_offset_mask.bias, 0.)
- def forward(self, x):
- out = self.conv_offset_mask(x)
- o1, o2, mask = torch.chunk(out, 3, dim=1)
- offset = torch.cat((o1, o2), dim=1)
- mask = torch.sigmoid(mask)
- x = torchvision.ops.deform_conv2d(input=x,
- offset=offset,
- weight=self.weight,
- bias=self.bias,
- padding=self.padding,
- mask=mask,
- stride=self.stride)
- return x
-
- # --------------------- Yolov8 modules ---------------------
- ## Yolov8-style BottleNeck
- class Bottleneck(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expand_ratio = 0.5,
- kernel_sizes = [3, 3],
- shortcut = True,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False,):
- super(Bottleneck, self).__init__()
- inter_dim = int(out_dim * expand_ratio) # hidden channels
- self.cv1 = Conv(in_dim, inter_dim, k=kernel_sizes[0], p=kernel_sizes[0]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
- self.cv2 = Conv(inter_dim, out_dim, k=kernel_sizes[1], p=kernel_sizes[1]//2, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.cv2(self.cv1(x))
- return x + h if self.shortcut else h
- # Yolov8-style StageBlock
- class RTCBlock(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- num_blocks = 1,
- shortcut = False,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False,):
- super(RTCBlock, self).__init__()
- self.inter_dim = out_dim // 2
- self.input_proj = Conv(in_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.m = nn.Sequential(*(
- Bottleneck(self.inter_dim, self.inter_dim, 1.0, [3, 3], shortcut, act_type, norm_type, depthwise)
- for _ in range(num_blocks)))
- self.output_proj = Conv((2 + num_blocks) * self.inter_dim, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- # Input proj
- x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1)
- out = list([x1, x2])
- # Bottlenecl
- out.extend(m(out[-1]) for m in self.m)
- # Output proj
- out = self.output_proj(torch.cat(out, dim=1))
- return out
|