rtpdetr.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. try:
  5. from .basic_modules.basic import MLP, multiclass_nms
  6. from .basic_modules.transformer import get_clones
  7. from .rtpdetr_encoder import build_image_encoder
  8. from .rtpdetr_decoder import build_transformer
  9. except:
  10. from basic_modules.basic import MLP, multiclass_nms
  11. from basic_modules.transformer import get_clones
  12. from rtpdetr_encoder import build_image_encoder
  13. from rtpdetr_decoder import build_transformer
  14. # Real-time PlainDETR
  15. class RT_PDETR(nn.Module):
  16. def __init__(self,
  17. cfg,
  18. num_classes = 80,
  19. conf_thresh = 0.1,
  20. nms_thresh = 0.5,
  21. topk = 300,
  22. deploy = False,
  23. no_multi_labels = False,
  24. use_nms = False,
  25. nms_class_agnostic = False,
  26. aux_loss = False,
  27. ):
  28. super().__init__()
  29. # ----------- Basic setting -----------
  30. self.num_queries_one2one = cfg['num_queries_one2one']
  31. self.num_queries_one2many = cfg['num_queries_one2many']
  32. self.num_queries = self.num_queries_one2one + self.num_queries_one2many
  33. self.num_classes = num_classes
  34. self.num_topk = topk
  35. self.aux_loss = aux_loss
  36. self.deploy = deploy
  37. # scale hidden channels by width_factor
  38. cfg['hidden_dim'] = round(cfg['hidden_dim'] * cfg['width'])
  39. ## Post-process parameters
  40. self.use_nms = use_nms
  41. self.nms_thresh = nms_thresh
  42. self.conf_thresh = conf_thresh
  43. self.no_multi_labels = no_multi_labels
  44. self.nms_class_agnostic = nms_class_agnostic
  45. # ----------- Network setting -----------
  46. ## Image encoder
  47. self.image_encoder = build_image_encoder(cfg)
  48. ## Transformer Decoder
  49. self.transformer = build_transformer(cfg, return_intermediate=self.training)
  50. self.query_embed = nn.Embedding(self.num_queries, cfg['hidden_dim'])
  51. ## Detect Head
  52. class_embed = nn.Linear(cfg['hidden_dim'], num_classes)
  53. bbox_embed = MLP(cfg['hidden_dim'], cfg['hidden_dim'], 4, 3)
  54. prior_prob = 0.01
  55. bias_value = -math.log((1 - prior_prob) / prior_prob)
  56. class_embed.bias.data = torch.ones(num_classes) * bias_value
  57. nn.init.constant_(bbox_embed.layers[-1].weight.data, 0)
  58. nn.init.constant_(bbox_embed.layers[-1].bias.data, 0)
  59. self.class_embed = get_clones(class_embed, cfg['de_num_layers'] + 1)
  60. self.bbox_embed = get_clones(bbox_embed, cfg['de_num_layers'] + 1)
  61. nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
  62. self.transformer.decoder.bbox_embed = self.bbox_embed
  63. self.transformer.decoder.class_embed = self.class_embed
  64. def pos2posembed(self, d_model, pos, temperature=10000):
  65. scale = 2 * torch.pi
  66. num_pos_feats = d_model // 2
  67. dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)
  68. dim_t_ = torch.div(dim_t, 2, rounding_mode='floor') / num_pos_feats
  69. dim_t = temperature ** (2 * dim_t_)
  70. # Position embedding for XY
  71. x_embed = pos[..., 0] * scale
  72. y_embed = pos[..., 1] * scale
  73. pos_x = x_embed[..., None] / dim_t
  74. pos_y = y_embed[..., None] / dim_t
  75. pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), dim=-1).flatten(-2)
  76. pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), dim=-1).flatten(-2)
  77. posemb = torch.cat((pos_y, pos_x), dim=-1)
  78. # Position embedding for WH
  79. if pos.size(-1) == 4:
  80. w_embed = pos[..., 2] * scale
  81. h_embed = pos[..., 3] * scale
  82. pos_w = w_embed[..., None] / dim_t
  83. pos_h = h_embed[..., None] / dim_t
  84. pos_w = torch.stack((pos_w[..., 0::2].sin(), pos_w[..., 1::2].cos()), dim=-1).flatten(-2)
  85. pos_h = torch.stack((pos_h[..., 0::2].sin(), pos_h[..., 1::2].cos()), dim=-1).flatten(-2)
  86. posemb = torch.cat((posemb, pos_w, pos_h), dim=-1)
  87. return posemb
  88. def get_posembed(self, d_model, mask, temperature=10000, normalize=False):
  89. not_mask = ~mask
  90. # [B, H, W]
  91. y_embed = not_mask.cumsum(1, dtype=torch.float32)
  92. x_embed = not_mask.cumsum(2, dtype=torch.float32)
  93. if normalize:
  94. y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + 1e-6)
  95. x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + 1e-6)
  96. else:
  97. y_embed = y_embed - 0.5
  98. x_embed = x_embed - 0.5
  99. # [H, W] -> [B, H, W, 2]
  100. pos = torch.stack([x_embed, y_embed], dim=-1)
  101. # [B, H, W, C]
  102. pos_embed = self.pos2posembed(d_model, pos, temperature)
  103. pos_embed = pos_embed.permute(0, 3, 1, 2)
  104. return pos_embed
  105. def post_process(self, box_pred, cls_pred):
  106. cls_pred = cls_pred[0]
  107. box_pred = box_pred[0]
  108. if self.no_multi_labels:
  109. # [M,]
  110. scores, labels = torch.max(cls_pred.sigmoid(), dim=1)
  111. # Keep top k top scoring indices only.
  112. num_topk = min(self.num_topk, box_pred.size(0))
  113. # Topk candidates
  114. predicted_prob, topk_idxs = scores.sort(descending=True)
  115. topk_scores = predicted_prob[:num_topk]
  116. topk_idxs = topk_idxs[:num_topk]
  117. # Filter out the proposals with low confidence score
  118. keep_idxs = topk_scores > self.conf_thresh
  119. topk_idxs = topk_idxs[keep_idxs]
  120. # Top-k results
  121. topk_scores = topk_scores[keep_idxs]
  122. topk_labels = labels[topk_idxs]
  123. topk_bboxes = box_pred[topk_idxs]
  124. else:
  125. # Top-k select
  126. cls_pred = cls_pred.flatten().sigmoid_()
  127. box_pred = box_pred
  128. # Keep top k top scoring indices only.
  129. num_topk = min(self.num_topk, box_pred.size(0))
  130. # Topk candidates
  131. predicted_prob, topk_idxs = cls_pred.sort(descending=True)
  132. topk_scores = predicted_prob[:num_topk]
  133. topk_idxs = topk_idxs[:self.num_topk]
  134. # Filter out the proposals with low confidence score
  135. keep_idxs = topk_scores > self.conf_thresh
  136. topk_scores = topk_scores[keep_idxs]
  137. topk_idxs = topk_idxs[keep_idxs]
  138. topk_box_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  139. ## Top-k results
  140. topk_labels = topk_idxs % self.num_classes
  141. topk_bboxes = box_pred[topk_box_idxs]
  142. topk_scores = topk_scores.cpu().numpy()
  143. topk_labels = topk_labels.cpu().numpy()
  144. topk_bboxes = topk_bboxes.cpu().numpy()
  145. # nms
  146. if self.use_nms:
  147. topk_scores, topk_labels, topk_bboxes = multiclass_nms(
  148. topk_scores, topk_labels, topk_bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  149. return topk_bboxes, topk_scores, topk_labels
  150. @torch.jit.unused
  151. def _set_aux_loss(self, outputs_class, outputs_coord, outputs_coord_old, outputs_deltas):
  152. # this is a workaround to make torchscript happy, as torchscript
  153. # doesn't support dictionary with non-homogeneous values, such
  154. # as a dict having both a Tensor and a list.
  155. return [
  156. {"pred_logits": a, "pred_boxes": b, "pred_boxes_old": c, "pred_deltas": d, }
  157. for a, b, c, d in zip(outputs_class[:-1], outputs_coord[:-1], outputs_coord_old[:-1], outputs_deltas[:-1])
  158. ]
  159. def inference_single_image(self, x):
  160. # ----------- Image Encoder -----------
  161. src = self.image_encoder(x)
  162. # ----------- Prepare inputs for Transformer -----------
  163. mask = torch.zeros([src.shape[0], src.shape[2], src.shape[3]]).bool().to(src.device)
  164. pos_embed = self.get_posembed(src.shape[1], mask, normalize=False)
  165. self_attn_mask = None
  166. query_embeds = self.query_embed.weight[:self.num_queries_one2one]
  167. # -----------Transformer -----------
  168. (
  169. hs,
  170. init_reference,
  171. inter_references,
  172. _,
  173. _,
  174. _,
  175. _,
  176. max_shape
  177. ) = self.transformer(src, mask, pos_embed, query_embeds, self_attn_mask)
  178. # ----------- Process outputs -----------
  179. outputs_classes_one2one = []
  180. outputs_coords_one2one = []
  181. outputs_deltas_one2one = []
  182. for lid in range(hs.shape[0]):
  183. if lid == 0:
  184. reference = init_reference
  185. else:
  186. reference = inter_references[lid - 1]
  187. outputs_class = self.class_embed[lid](hs[lid])
  188. tmp = self.bbox_embed[lid](hs[lid])
  189. outputs_coord = self.transformer.decoder.delta2bbox(reference, tmp, max_shape) # xyxy
  190. outputs_classes_one2one.append(outputs_class[:, :self.num_queries_one2one])
  191. outputs_coords_one2one.append(outputs_coord[:, :self.num_queries_one2one])
  192. outputs_deltas_one2one.append(tmp[:, :self.num_queries_one2one])
  193. outputs_classes_one2one = torch.stack(outputs_classes_one2one)
  194. outputs_coords_one2one = torch.stack(outputs_coords_one2one)
  195. # ------------ Post process ------------
  196. cls_pred = outputs_classes_one2one[-1]
  197. box_pred = outputs_coords_one2one[-1]
  198. # post-process
  199. bboxes, scores, labels = self.post_process(box_pred, cls_pred)
  200. outputs = {
  201. "scores": scores,
  202. "labels": labels,
  203. "bboxes": bboxes,
  204. }
  205. return outputs
  206. def forward(self, x):
  207. if not self.training:
  208. return self.inference_single_image(x)
  209. # ----------- Image Encoder -----------
  210. src = self.image_encoder(x)
  211. # ----------- Prepare inputs for Transformer -----------
  212. mask = torch.zeros([src.shape[0], src.shape[2], src.shape[3]]).bool().to(src.device)
  213. pos_embed = self.get_posembed(src.shape[1], mask, normalize=False)
  214. self_attn_mask = torch.zeros(
  215. [self.num_queries, self.num_queries, ]).bool().to(src.device)
  216. self_attn_mask[self.num_queries_one2one:, 0: self.num_queries_one2one, ] = True
  217. self_attn_mask[0: self.num_queries_one2one, self.num_queries_one2one:, ] = True
  218. query_embeds = self.query_embed.weight
  219. # -----------Transformer -----------
  220. (
  221. hs,
  222. init_reference,
  223. inter_references,
  224. enc_outputs_class,
  225. enc_outputs_coord_unact,
  226. enc_outputs_delta,
  227. output_proposals,
  228. max_shape
  229. ) = self.transformer(src, mask, pos_embed, query_embeds, self_attn_mask)
  230. # ----------- Process outputs -----------
  231. outputs_classes_one2one = []
  232. outputs_coords_one2one = []
  233. outputs_classes_one2many = []
  234. outputs_coords_one2many = []
  235. outputs_coords_old_one2one = []
  236. outputs_deltas_one2one = []
  237. outputs_coords_old_one2many = []
  238. outputs_deltas_one2many = []
  239. for lid in range(hs.shape[0]):
  240. if lid == 0:
  241. reference = init_reference
  242. else:
  243. reference = inter_references[lid - 1]
  244. outputs_class = self.class_embed[lid](hs[lid])
  245. tmp = self.bbox_embed[lid](hs[lid])
  246. outputs_coord = self.transformer.decoder.box_xyxy_to_cxcywh(
  247. self.transformer.decoder.delta2bbox(reference, tmp, max_shape))
  248. outputs_classes_one2one.append(outputs_class[:, 0: self.num_queries_one2one])
  249. outputs_classes_one2many.append(outputs_class[:, self.num_queries_one2one:])
  250. outputs_coords_one2one.append(outputs_coord[:, 0: self.num_queries_one2one])
  251. outputs_coords_one2many.append(outputs_coord[:, self.num_queries_one2one:])
  252. outputs_coords_old_one2one.append(reference[:, :self.num_queries_one2one])
  253. outputs_coords_old_one2many.append(reference[:, self.num_queries_one2one:])
  254. outputs_deltas_one2one.append(tmp[:, :self.num_queries_one2one])
  255. outputs_deltas_one2many.append(tmp[:, self.num_queries_one2one:])
  256. outputs_classes_one2one = torch.stack(outputs_classes_one2one)
  257. outputs_coords_one2one = torch.stack(outputs_coords_one2one)
  258. outputs_classes_one2many = torch.stack(outputs_classes_one2many)
  259. outputs_coords_one2many = torch.stack(outputs_coords_one2many)
  260. out = {
  261. "pred_logits": outputs_classes_one2one[-1],
  262. "pred_boxes": outputs_coords_one2one[-1],
  263. "pred_logits_one2many": outputs_classes_one2many[-1],
  264. "pred_boxes_one2many": outputs_coords_one2many[-1],
  265. "pred_boxes_old": outputs_coords_old_one2one[-1],
  266. "pred_deltas": outputs_deltas_one2one[-1],
  267. "pred_boxes_old_one2many": outputs_coords_old_one2many[-1],
  268. "pred_deltas_one2many": outputs_deltas_one2many[-1],
  269. }
  270. out["aux_outputs"] = self._set_aux_loss(
  271. outputs_classes_one2one, outputs_coords_one2one, outputs_coords_old_one2one, outputs_deltas_one2one
  272. )
  273. out["aux_outputs_one2many"] = self._set_aux_loss(
  274. outputs_classes_one2many, outputs_coords_one2many, outputs_coords_old_one2many, outputs_deltas_one2many
  275. )
  276. out["enc_outputs"] = {
  277. "pred_logits": enc_outputs_class,
  278. "pred_boxes": enc_outputs_coord_unact,
  279. "pred_boxes_old": output_proposals,
  280. "pred_deltas": enc_outputs_delta,
  281. }
  282. return out
  283. if __name__ == '__main__':
  284. import time
  285. from thop import profile
  286. from loss import build_criterion
  287. # Model config
  288. cfg = {
  289. 'width': 1.0,
  290. 'depth': 1.0,
  291. 'max_stride': 32,
  292. 'out_stride': 16,
  293. # Image Encoder - Backbone
  294. 'backbone': 'resnet50',
  295. 'backbone_norm': 'FrozeBN',
  296. 'pretrained': True,
  297. 'freeze_at': 0,
  298. 'freeze_stem_only': False,
  299. 'hidden_dim': 256,
  300. 'en_num_heads': 8,
  301. 'en_num_layers': 1,
  302. 'en_mlp_ratio': 4.0,
  303. 'en_dropout': 0.0,
  304. 'en_act': 'gelu',
  305. # Transformer Decoder
  306. 'transformer': 'plain_detr_transformer',
  307. 'hidden_dim': 256,
  308. 'de_num_heads': 8,
  309. 'de_num_layers': 6,
  310. 'de_mlp_ratio': 4.0,
  311. 'de_dropout': 0.0,
  312. 'de_act': 'gelu',
  313. 'de_pre_norm': True,
  314. 'rpe_hidden_dim': 512,
  315. 'use_checkpoint': False,
  316. 'proposal_feature_levels': 3,
  317. 'proposal_tgt_strides': [8, 16, 32],
  318. 'num_queries_one2one': 300,
  319. 'num_queries_one2many': 300,
  320. # Matcher
  321. 'matcher_hpy': {'cost_class': 2.0,
  322. 'cost_bbox': 1.0,
  323. 'cost_giou': 2.0,},
  324. # Loss
  325. 'use_vfl': True,
  326. 'k_one2many': 6,
  327. 'lambda_one2many': 1.0,
  328. 'loss_coeff': {'class': 2,
  329. 'bbox': 1,
  330. 'giou': 2,
  331. 'no_object': 0.1,},
  332. }
  333. bs = 1
  334. # Create a batch of images & targets
  335. image = torch.randn(bs, 3, 640, 640)
  336. targets = [{
  337. 'labels': torch.tensor([2, 4, 5, 8]).long(),
  338. 'boxes': torch.tensor([[0, 0, 10, 10], [12, 23, 56, 70], [0, 10, 20, 30], [50, 60, 55, 150]]).float() / 640.
  339. }] * bs
  340. # Create model
  341. model = RT_PDETR(cfg, num_classes=80)
  342. model.train()
  343. # Model inference
  344. t0 = time.time()
  345. outputs = model(image)
  346. t1 = time.time()
  347. print('Infer time: ', t1 - t0)
  348. # Create criterion
  349. criterion = build_criterion(cfg, num_classes=80, aux_loss=True)
  350. # Compute loss
  351. loss = criterion(outputs, targets)
  352. for k in loss.keys():
  353. print("{} : {}".format(k, loss[k].item()))
  354. print('==============================')
  355. model.eval()
  356. flops, params = profile(model, inputs=(image, ), verbose=False)
  357. print('==============================')
  358. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  359. print('Params : {:.2f} M'.format(params / 1e6))