yjh0410 578dc295f4 redesign RTCDet 2 anni fa
..
README.md 578dc295f4 redesign RTCDet 2 anni fa
build.py 578dc295f4 redesign RTCDet 2 anni fa
loss.py 578dc295f4 redesign RTCDet 2 anni fa
matcher.py 578dc295f4 redesign RTCDet 2 anni fa
rtcdet.py 578dc295f4 redesign RTCDet 2 anni fa
rtcdet_backbone.py 578dc295f4 redesign RTCDet 2 anni fa
rtcdet_basic.py 578dc295f4 redesign RTCDet 2 anni fa
rtcdet_head.py 578dc295f4 redesign RTCDet 2 anni fa
rtcdet_neck.py 578dc295f4 redesign RTCDet 2 anni fa
rtcdet_pafpn.py 578dc295f4 redesign RTCDet 2 anni fa
rtcdet_pred.py 578dc295f4 redesign RTCDet 2 anni fa

README.md

RTCDet-v2: My Second Empirical Study of Real-Time Convolutional Object Detectors.

Model Scale Batch APtest
0.5:0.95
APtest
0.5
APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
RTCDet-N 640 8xb16
RTCDet-T 640 8xb16
RTCDet-S 640 8xb16
RTCDet-M 640 8xb16
RTCDet-L 640 8xb16
RTCDet-X 640
  • For training, we train my RTCDet series series with 300 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of YOLOX, but we remove the rotation transformation which is used in YOLOX's strong augmentation.
  • For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64.
  • For learning rate scheduler, we use linear decay scheduler.
  • Due to my limited computing resources, I can not train RTCDet-X with the setting of batch size=128.
Model Scale Batch APtest
0.5:0.95
APtest
0.5
APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
RTCDet-P 320 8xb16
RTCDet-P 416 8xb16
RTCDet-P 512 8xb16
RTCDet-P 640 8xb16