| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657 |
- import math
- import copy
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- def get_clones(module, N):
- if N <= 0:
- return None
- else:
- return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
- # ----------------- MLP modules -----------------
- class MLP(nn.Module):
- def __init__(self, in_dim, hidden_dim, out_dim, num_layers):
- super().__init__()
- self.num_layers = num_layers
- h = [hidden_dim] * (num_layers - 1)
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([in_dim] + h, h + [out_dim]))
- def forward(self, x):
- for i, layer in enumerate(self.layers):
- x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
- return x
- class FFN(nn.Module):
- def __init__(self, d_model=256, mlp_ratio=4.0, dropout=0., act_type='relu'):
- super().__init__()
- self.fpn_dim = round(d_model * mlp_ratio)
- self.linear1 = nn.Linear(d_model, self.fpn_dim)
- self.activation = get_activation(act_type)
- self.dropout2 = nn.Dropout(dropout)
- self.linear2 = nn.Linear(self.fpn_dim, d_model)
- self.dropout3 = nn.Dropout(dropout)
- self.norm = nn.LayerNorm(d_model)
- def forward(self, src):
- src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
- src = src + self.dropout3(src2)
- src = self.norm(src)
-
- return src
-
- # ----------------- CNN modules -----------------
- def get_conv2d(c1, c2, k, p, s, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type == 'gelu':
- return nn.GELU()
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
-
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
- """3x3 convolution with padding"""
- return nn.Conv2d(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=dilation,
- groups=groups,
- bias=False,
- dilation=dilation,
- )
- def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
- class FrozenBatchNorm2d(torch.nn.Module):
- def __init__(self, n):
- super(FrozenBatchNorm2d, self).__init__()
- self.register_buffer("weight", torch.ones(n))
- self.register_buffer("bias", torch.zeros(n))
- self.register_buffer("running_mean", torch.zeros(n))
- self.register_buffer("running_var", torch.ones(n))
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- num_batches_tracked_key = prefix + 'num_batches_tracked'
- if num_batches_tracked_key in state_dict:
- del state_dict[num_batches_tracked_key]
- super(FrozenBatchNorm2d, self)._load_from_state_dict(
- state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs)
- def forward(self, x):
- # move reshapes to the beginning
- # to make it fuser-friendly
- w = self.weight.reshape(1, -1, 1, 1)
- b = self.bias.reshape(1, -1, 1, 1)
- rv = self.running_var.reshape(1, -1, 1, 1)
- rm = self.running_mean.reshape(1, -1, 1, 1)
- eps = 1e-5
- scale = w * (rv + eps).rsqrt()
- bias = b - rm * scale
- return x * scale + bias
-
- class BasicConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- act_type :str = 'lrelu', # activation
- norm_type :str = 'BN', # normalization
- ):
- super(BasicConv, self).__init__()
- add_bias = False if norm_type else True
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
- self.norm = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- class DepthwiseConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- act_type :str = None, # activation
- norm_type :str = 'BN', # normalization
- ):
- super(DepthwiseConv, self).__init__()
- assert in_dim == out_dim
- add_bias = False if norm_type else True
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=out_dim, bias=add_bias)
- self.norm = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- class PointwiseConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- act_type :str = 'lrelu', # activation
- norm_type :str = 'BN', # normalization
- ):
- super(DepthwiseConv, self).__init__()
- assert in_dim == out_dim
- add_bias = False if norm_type else True
- self.conv = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, g=1, bias=add_bias)
- self.norm = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- ## Yolov8's BottleNeck
- class Bottleneck(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- expand_ratio = 0.5,
- kernel_sizes = [3, 3],
- shortcut = True,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False,):
- super(Bottleneck, self).__init__()
- inter_dim = int(out_dim * expand_ratio)
- if depthwise:
- self.cv1 = nn.Sequential(
- DepthwiseConv(in_dim, in_dim, kernel_size=kernel_sizes[0], padding=kernel_sizes[0]//2, act_type=act_type, norm_type=norm_type),
- PointwiseConv(in_dim, inter_dim, act_type=act_type, norm_type=norm_type),
- )
- self.cv2 = nn.Sequential(
- DepthwiseConv(inter_dim, inter_dim, kernel_size=kernel_sizes[1], padding=kernel_sizes[1]//2, act_type=act_type, norm_type=norm_type),
- PointwiseConv(inter_dim, out_dim, act_type=act_type, norm_type=norm_type),
- )
- else:
- self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=kernel_sizes[0], padding=kernel_sizes[0]//2, act_type=act_type, norm_type=norm_type)
- self.cv2 = BasicConv(inter_dim, out_dim, kernel_size=kernel_sizes[1], padding=kernel_sizes[1]//2, act_type=act_type, norm_type=norm_type)
- self.shortcut = shortcut and in_dim == out_dim
- def forward(self, x):
- h = self.cv2(self.cv1(x))
- return x + h if self.shortcut else h
- # Yolov8's StageBlock
- class RTCBlock(nn.Module):
- def __init__(self,
- in_dim,
- out_dim,
- num_blocks = 1,
- shortcut = False,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False,):
- super(RTCBlock, self).__init__()
- self.inter_dim = out_dim // 2
- self.input_proj = BasicConv(in_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- self.m = nn.Sequential(*(
- Bottleneck(self.inter_dim, self.inter_dim, 1.0, [3, 3], shortcut, act_type, norm_type, depthwise)
- for _ in range(num_blocks)))
- self.output_proj = BasicConv((2 + num_blocks) * self.inter_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- # Input proj
- x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1)
- out = list([x1, x2])
- # Bottlenecl
- out.extend(m(out[-1]) for m in self.m)
- # Output proj
- out = self.output_proj(torch.cat(out, dim=1))
- return out
- # ----------------- Transformer modules -----------------
- ## Basic ops of Deformable Attn
- def deformable_attention_core_func(value, value_spatial_shapes,
- value_level_start_index, sampling_locations,
- attention_weights):
- """
- Args:
- value (Tensor): [bs, value_length, n_head, c]
- value_spatial_shapes (Tensor|List): [n_levels, 2]
- value_level_start_index (Tensor|List): [n_levels]
- sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2]
- attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points]
- Returns:
- output (Tensor): [bs, Length_{query}, C]
- """
- bs, _, n_head, c = value.shape
- _, Len_q, _, n_levels, n_points, _ = sampling_locations.shape
- split_shape = [h * w for h, w in value_spatial_shapes]
- value_list = value.split(split_shape, axis=1)
- sampling_grids = 2 * sampling_locations - 1
- sampling_value_list = []
- for level, (h, w) in enumerate(value_spatial_shapes):
- # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
- value_l_ = value_list[level].flatten(2).transpose(
- [0, 2, 1]).reshape([bs * n_head, c, h, w])
- # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
- sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(
- [0, 2, 1, 3, 4]).flatten(0, 1)
- # N_*M_, D_, Lq_, P_
- sampling_value_l_ = F.grid_sample(
- value_l_,
- sampling_grid_l_,
- mode='bilinear',
- padding_mode='zeros',
- align_corners=False)
- sampling_value_list.append(sampling_value_l_)
- # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_)
- attention_weights = attention_weights.transpose([0, 2, 1, 3, 4]).reshape(
- [bs * n_head, 1, Len_q, n_levels * n_points])
- output = (torch.stack(
- sampling_value_list, axis=-2).flatten(-2) *
- attention_weights).sum(-1).reshape([bs, n_head * c, Len_q])
- return output.transpose([0, 2, 1])
- class MSDeformableAttention(nn.Layer):
- def __init__(self,
- embed_dim=256,
- num_heads=8,
- num_levels=4,
- num_points=4,
- lr_mult=0.1):
- """
- Multi-Scale Deformable Attention Module
- """
- super(MSDeformableAttention, self).__init__()
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.num_levels = num_levels
- self.num_points = num_points
- self.total_points = num_heads * num_levels * num_points
- self.head_dim = embed_dim // num_heads
- assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
- self.sampling_offsets = nn.Linear(
- embed_dim,
- self.total_points * 2,
- weight_attr=ParamAttr(learning_rate=lr_mult),
- bias_attr=ParamAttr(learning_rate=lr_mult))
- self.attention_weights = nn.Linear(embed_dim, self.total_points)
- self.value_proj = nn.Linear(embed_dim, embed_dim)
- self.output_proj = nn.Linear(embed_dim, embed_dim)
- try:
- # use cuda op
- from deformable_detr_ops import ms_deformable_attn
- self.ms_deformable_attn_core = ms_deformable_attn
- except:
- # use paddle func
- self.ms_deformable_attn_core = deformable_attention_core_func
- self._reset_parameters()
- def _reset_parameters(self):
- # sampling_offsets
- constant_(self.sampling_offsets.weight)
- thetas = paddle.arange(
- self.num_heads,
- dtype=paddle.float32) * (2.0 * math.pi / self.num_heads)
- grid_init = paddle.stack([thetas.cos(), thetas.sin()], -1)
- grid_init = grid_init / grid_init.abs().max(-1, keepdim=True)
- grid_init = grid_init.reshape([self.num_heads, 1, 1, 2]).tile(
- [1, self.num_levels, self.num_points, 1])
- scaling = paddle.arange(
- 1, self.num_points + 1,
- dtype=paddle.float32).reshape([1, 1, -1, 1])
- grid_init *= scaling
- self.sampling_offsets.bias.set_value(grid_init.flatten())
- # attention_weights
- constant_(self.attention_weights.weight)
- constant_(self.attention_weights.bias)
- # proj
- xavier_uniform_(self.value_proj.weight)
- constant_(self.value_proj.bias)
- xavier_uniform_(self.output_proj.weight)
- constant_(self.output_proj.bias)
- def forward(self,
- query,
- reference_points,
- value,
- value_spatial_shapes,
- value_level_start_index,
- value_mask=None):
- """
- Args:
- query (Tensor): [bs, query_length, C]
- reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
- bottom-right (1, 1), including padding area
- value (Tensor): [bs, value_length, C]
- value_spatial_shapes (Tensor): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
- value_level_start_index (Tensor(int64)): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
- value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
- Returns:
- output (Tensor): [bs, Length_{query}, C]
- """
- bs, Len_q = query.shape[:2]
- Len_v = value.shape[1]
- assert int(value_spatial_shapes.prod(1).sum()) == Len_v
- value = self.value_proj(value)
- if value_mask is not None:
- value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
- value *= value_mask
- value = value.reshape([bs, Len_v, self.num_heads, self.head_dim])
- sampling_offsets = self.sampling_offsets(query).reshape(
- [bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2])
- attention_weights = self.attention_weights(query).reshape(
- [bs, Len_q, self.num_heads, self.num_levels * self.num_points])
- attention_weights = F.softmax(attention_weights).reshape(
- [bs, Len_q, self.num_heads, self.num_levels, self.num_points])
- if reference_points.shape[-1] == 2:
- offset_normalizer = value_spatial_shapes.flip([1]).reshape(
- [1, 1, 1, self.num_levels, 1, 2])
- sampling_locations = reference_points.reshape([
- bs, Len_q, 1, self.num_levels, 1, 2
- ]) + sampling_offsets / offset_normalizer
- elif reference_points.shape[-1] == 4:
- sampling_locations = (
- reference_points[:, :, None, :, None, :2] + sampling_offsets /
- self.num_points * reference_points[:, :, None, :, None, 2:] *
- 0.5)
- else:
- raise ValueError(
- "Last dim of reference_points must be 2 or 4, but get {} instead.".
- format(reference_points.shape[-1]))
- output = self.ms_deformable_attn_core(
- value, value_spatial_shapes, value_level_start_index,
- sampling_locations, attention_weights)
- output = self.output_proj(output)
- return output
- ## Transformer Encoder layer
- class TransformerEncoderLayer(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- mlp_ratio :float = 4.0,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- # ----------- Basic parameters -----------
- # Multi-head Self-Attn
- self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=True)
- self.dropout = nn.Dropout(dropout)
- self.norm = nn.LayerNorm(d_model)
- # Feedforwaed Network
- self.ffn = FFN(d_model, mlp_ratio, dropout, act_type)
- def with_pos_embed(self, tensor, pos):
- return tensor if pos is None else tensor + pos
- def forward(self, src, pos_embed):
- """
- Input:
- src: [torch.Tensor] -> [B, N, C]
- pos_embed: [torch.Tensor] -> [B, N, C]
- Output:
- src: [torch.Tensor] -> [B, N, C]
- """
- q = k = self.with_pos_embed(src, pos_embed)
- # -------------- MHSA --------------
- src2 = self.self_attn(q, k, value=src)[0]
- src = src + self.dropout(src2)
- src = self.norm(src)
- # -------------- FFN --------------
- src = self.ffn(src)
-
- return src
- ## Transformer Encoder
- class TransformerEncoder(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_layers :int = 1,
- mlp_ratio :float = 4.0,
- pe_temperature : float = 10000.,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- self.pe_temperature = pe_temperature
- self.pos_embed = None
- # ----------- Basic parameters -----------
- self.encoder_layers = get_clones(
- TransformerEncoderLayer(d_model, num_heads, mlp_ratio, dropout, act_type), num_layers)
- def build_2d_sincos_position_embedding(self, w, h, embed_dim=256, temperature=10000.):
- assert embed_dim % 4 == 0, \
- 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
-
- # ----------- Check cahed pos_embed -----------
- if self.pos_embed is not None and \
- self.pos_embed.shape[2:] == [h, w]:
- return self.pos_embed
-
- # ----------- Generate grid coords -----------
- grid_w = torch.arange(int(w), dtype=torch.float32)
- grid_h = torch.arange(int(h), dtype=torch.float32)
- grid_w, grid_h = torch.meshgrid([grid_w, grid_h]) # shape: [H, W]
- pos_dim = embed_dim // 4
- omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
- omega = 1. / (temperature**omega)
- out_w = grid_w.flatten()[..., None] @ omega[None] # shape: [N, C]
- out_h = grid_h.flatten()[..., None] @ omega[None] # shape: [N, C]
- # shape: [1, N, C]
- pos_embed = torch.concat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h),torch.cos(out_h)], axis=1)[None, :, :]
- self.pos_embed = pos_embed
- return pos_embed
- def forward(self, src):
- """
- Input:
- src: [torch.Tensor] -> [B, C, H, W]
- Output:
- src: [torch.Tensor] -> [B, N, C]
- """
- # -------- Transformer encoder --------
- for encoder in self.encoder_layers:
- channels, fmp_h, fmp_w = src.shape[1:]
- # [B, C, H, W] -> [B, N, C], N=HxW
- src_flatten = src.flatten(2).permute(0, 2, 1)
- pos_embed = self.build_2d_sincos_position_embedding(
- fmp_w, fmp_h, channels, self.pe_temperature)
- memory = encoder(src_flatten, pos_embed=pos_embed)
- # [B, N, C] -> [B, C, N] -> [B, C, H, W]
- src = memory.permute(0, 2, 1).reshape([-1, channels, fmp_h, fmp_w])
- return src
- ## Transformer Decoder layer
- class TransformerDecoderLayer(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_levels :int = 3,
- num_points :int = 4,
- mlp_ratio :float = 4.0,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_levels = num_levels
- self.num_points = num_points
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- # ---------------- Network parameters ----------------
- ## Multi-head Self-Attn
- self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
- self.dropout1 = nn.Dropout(dropout)
- self.norm1 = nn.LayerNorm(d_model)
- ## CrossAttention
- self.cross_attn = MSDeformableAttention(d_model, num_heads, num_levels, num_points, 1.0)
- self.dropout2 = nn.Dropout(dropout)
- self.norm2 = nn.LayerNorm(d_model)
- ## FFN
- self.ffn = FFN(d_model, mlp_ratio, dropout, act_type)
- def with_pos_embed(self, tensor, pos):
- return tensor if pos is None else tensor + pos
- def forward(self,
- tgt,
- reference_points,
- memory,
- memory_spatial_shapes,
- memory_level_start_index,
- attn_mask=None,
- memory_mask=None,
- query_pos_embed=None):
- # ---------------- MSHA for Object Query -----------------
- q = k = self.with_pos_embed(tgt, query_pos_embed)
- if attn_mask is not None:
- attn_mask = torch.where(
- attn_mask.astype('bool'),
- torch.zeros(attn_mask.shape, tgt.dtype),
- torch.full(attn_mask.shape, float("-inf"), tgt.dtype))
- tgt2 = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
- tgt = tgt + self.dropout1(tgt2)
- tgt = self.norm1(tgt)
- # ---------------- CMHA for Object Query and Image-feature -----------------
- tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos_embed),
- reference_points,
- memory,
- memory_spatial_shapes,
- memory_level_start_index,
- memory_mask)
- tgt = tgt + self.dropout2(tgt2)
- tgt = self.norm2(tgt)
- # ---------------- FeedForward Network -----------------
- tgt = self.ffn(tgt)
- return tgt
- ## Transformer Decoder
- class TransformerDecoder(nn.Module):
- def __init__(self,
- d_model :int = 256,
- num_heads :int = 8,
- num_layers :int = 1,
- mlp_ratio :float = 4.0,
- pe_temperature :float = 10000.,
- dropout :float = 0.1,
- act_type :str = "relu",
- ):
- super().__init__()
- # ----------- Basic parameters -----------
- self.d_model = d_model
- self.num_heads = num_heads
- self.num_layers = num_layers
- self.mlp_ratio = mlp_ratio
- self.dropout = dropout
- self.act_type = act_type
- self.pe_temperature = pe_temperature
- self.pos_embed = None
- # ----------- Basic parameters -----------
- self.decoder_layers = None
- def build_2d_sincos_position_embedding(self, w, h, embed_dim=256, temperature=10000.):
- assert embed_dim % 4 == 0, \
- 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
-
- # ----------- Check cahed pos_embed -----------
- if self.pos_embed is not None and \
- self.pos_embed.shape[2:] == [h, w]:
- return self.pos_embed
-
- # ----------- Generate grid coords -----------
- grid_w = torch.arange(int(w), dtype=torch.float32)
- grid_h = torch.arange(int(h), dtype=torch.float32)
- grid_w, grid_h = torch.meshgrid([grid_w, grid_h]) # shape: [H, W]
- pos_dim = embed_dim // 4
- omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
- omega = 1. / (temperature**omega)
- out_w = grid_w.flatten()[..., None] @ omega[None] # shape: [N, C]
- out_h = grid_h.flatten()[..., None] @ omega[None] # shape: [N, C]
- # shape: [1, N, C]
- pos_embed = torch.concat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h),torch.cos(out_h)], axis=1)[None, :, :]
- self.pos_embed = pos_embed
- return pos_embed
|