train.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. from __future__ import division
  2. import os
  3. import argparse
  4. from copy import deepcopy
  5. # ----------------- Torch Components -----------------
  6. import torch
  7. import torch.distributed as dist
  8. from torch.nn.parallel import DistributedDataParallel as DDP
  9. # ----------------- Extra Components -----------------
  10. from utils import distributed_utils
  11. from utils.misc import compute_flops
  12. # ----------------- Config Components -----------------
  13. from config import build_dataset_config, build_model_config, build_trans_config
  14. # ----------------- Model Components -----------------
  15. from models.detectors import build_model
  16. # ----------------- Train Components -----------------
  17. from engine import build_trainer
  18. def parse_args():
  19. parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
  20. # Basic
  21. parser.add_argument('--cuda', action='store_true', default=False,
  22. help='use cuda.')
  23. parser.add_argument('-size', '--img_size', default=640, type=int,
  24. help='input image size')
  25. parser.add_argument('--num_workers', default=4, type=int,
  26. help='Number of workers used in dataloading')
  27. parser.add_argument('--tfboard', action='store_true', default=False,
  28. help='use tensorboard')
  29. parser.add_argument('--save_folder', default='weights/', type=str,
  30. help='path to save weight')
  31. parser.add_argument('--eval_first', action='store_true', default=False,
  32. help='evaluate model before training.')
  33. parser.add_argument('--fp16', dest="fp16", action="store_true", default=False,
  34. help="Adopting mix precision training.")
  35. parser.add_argument('--vis_tgt', action="store_true", default=False,
  36. help="visualize training data.")
  37. parser.add_argument('--vis_aux_loss', action="store_true", default=False,
  38. help="visualize aux loss.")
  39. # Batchsize
  40. parser.add_argument('-bs', '--batch_size', default=16, type=int,
  41. help='batch size on all the GPUs.')
  42. # Epoch
  43. parser.add_argument('--max_epoch', default=150, type=int,
  44. help='max epoch.')
  45. parser.add_argument('--wp_epoch', default=1, type=int,
  46. help='warmup epoch.')
  47. parser.add_argument('--eval_epoch', default=10, type=int,
  48. help='after eval epoch, the model is evaluated on val dataset.')
  49. parser.add_argument('--no_aug_epoch', default=20, type=int,
  50. help='cancel strong augmentation.')
  51. # Model
  52. parser.add_argument('-m', '--model', default='yolov1', type=str,
  53. help='build yolo')
  54. parser.add_argument('-ct', '--conf_thresh', default=0.005, type=float,
  55. help='confidence threshold')
  56. parser.add_argument('-nt', '--nms_thresh', default=0.6, type=float,
  57. help='NMS threshold')
  58. parser.add_argument('--topk', default=1000, type=int,
  59. help='topk candidates dets of each level before NMS')
  60. parser.add_argument('-p', '--pretrained', default=None, type=str,
  61. help='load pretrained weight')
  62. parser.add_argument('-r', '--resume', default=None, type=str,
  63. help='keep training')
  64. parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
  65. help='Perform NMS operations regardless of category.')
  66. # Dataset
  67. parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/',
  68. help='data root')
  69. parser.add_argument('-d', '--dataset', default='coco',
  70. help='coco, voc, widerface, crowdhuman')
  71. parser.add_argument('--load_cache', action='store_true', default=False,
  72. help='load data into memory.')
  73. # Train trick
  74. parser.add_argument('-ms', '--multi_scale', action='store_true', default=False,
  75. help='Multi scale')
  76. parser.add_argument('--ema', action='store_true', default=False,
  77. help='Model EMA')
  78. parser.add_argument('--min_box_size', default=8.0, type=float,
  79. help='min size of target bounding box.')
  80. parser.add_argument('--mosaic', default=None, type=float,
  81. help='mosaic augmentation.')
  82. parser.add_argument('--mixup', default=None, type=float,
  83. help='mixup augmentation.')
  84. parser.add_argument('--grad_accumulate', default=1, type=int,
  85. help='gradient accumulation')
  86. # DDP train
  87. parser.add_argument('-dist', '--distributed', action='store_true', default=False,
  88. help='distributed training')
  89. parser.add_argument('--dist_url', default='env://',
  90. help='url used to set up distributed training')
  91. parser.add_argument('--world_size', default=1, type=int,
  92. help='number of distributed processes')
  93. parser.add_argument('--sybn', action='store_true', default=False,
  94. help='use sybn.')
  95. # Debug mode
  96. parser.add_argument('--debug', action='store_true', default=False,
  97. help='debug mode.')
  98. return parser.parse_args()
  99. def train():
  100. args = parse_args()
  101. print("Setting Arguments.. : ", args)
  102. print("----------------------------------------------------------")
  103. # Build DDP
  104. local_rank = local_process_rank = -1
  105. if args.distributed:
  106. distributed_utils.init_distributed_mode(args)
  107. print("git:\n {}\n".format(distributed_utils.get_sha()))
  108. try:
  109. # Multiple Mechine & Multiple GPUs (world size > 8)
  110. local_rank = torch.distributed.get_rank()
  111. local_process_rank = int(os.getenv('LOCAL_PROCESS_RANK', '0'))
  112. except:
  113. # Single Mechine & Multiple GPUs (world size <= 8)
  114. local_rank = local_process_rank = torch.distributed.get_rank()
  115. world_size = distributed_utils.get_world_size()
  116. print("LOCAL RANK: ", local_rank)
  117. print("LOCAL_PROCESS_RANL: ", local_process_rank)
  118. print('WORLD SIZE: {}'.format(world_size))
  119. # Build CUDA
  120. if args.cuda and torch.cuda.is_available():
  121. print('use cuda')
  122. device = torch.device("cuda")
  123. else:
  124. device = torch.device("cpu")
  125. # Build Dataset & Model & Trans. Config
  126. data_cfg = build_dataset_config(args)
  127. model_cfg = build_model_config(args)
  128. trans_cfg = build_trans_config(model_cfg['trans_type'])
  129. # Build Model
  130. model, criterion = build_model(args, model_cfg, device, data_cfg['num_classes'], True)
  131. model = model.to(device).train()
  132. model_without_ddp = model
  133. if args.sybn and args.distributed:
  134. print('use SyncBatchNorm ...')
  135. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
  136. if args.distributed:
  137. model = DDP(model, device_ids=[args.gpu])
  138. model_without_ddp = model.module
  139. # Calcute Params & GFLOPs
  140. if distributed_utils.is_main_process:
  141. model_copy = deepcopy(model_without_ddp)
  142. model_copy.trainable = False
  143. model_copy.eval()
  144. compute_flops(model=model_copy,
  145. img_size=args.img_size,
  146. device=device)
  147. del model_copy
  148. if args.distributed:
  149. dist.barrier()
  150. # Build Trainer
  151. trainer = build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model_without_ddp, criterion, world_size)
  152. # --------------------------------- Train: Start ---------------------------------
  153. ## Eval before training
  154. if args.eval_first and distributed_utils.is_main_process():
  155. # to check whether the evaluator can work
  156. model_eval = model_without_ddp
  157. trainer.eval(model_eval)
  158. ## Satrt Training
  159. trainer.train(model)
  160. # --------------------------------- Train: End ---------------------------------
  161. # Empty cache after train loop
  162. del trainer
  163. if args.cuda:
  164. torch.cuda.empty_cache()
  165. if __name__ == '__main__':
  166. train()