| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- """Adapted from:
- @longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch
- @rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn
- Licensed under The MIT License [see LICENSE for details]
- """
- from dataset.voc import VOCDataset, VOC_CLASSES
- import os
- import time
- import numpy as np
- import pickle
- import xml.etree.ElementTree as ET
- from utils.box_ops import rescale_bboxes
- class VOCAPIEvaluator():
- """ VOC AP Evaluation class """
- def __init__(self,
- data_dir,
- device,
- transform,
- set_type='test',
- year='2007',
- display=False):
- # basic config
- self.data_dir = data_dir
- self.device = device
- self.labelmap = VOC_CLASSES
- self.set_type = set_type
- self.year = year
- self.display = display
- self.map = 0.
- # transform
- self.transform = transform
- # path
- self.devkit_path = os.path.join(data_dir, 'VOC' + year)
- self.annopath = os.path.join(data_dir, 'VOC2007', 'Annotations', '%s.xml')
- self.imgpath = os.path.join(data_dir, 'VOC2007', 'JPEGImages', '%s.jpg')
- self.imgsetpath = os.path.join(data_dir, 'VOC2007', 'ImageSets', 'Main', set_type+'.txt')
- self.output_dir = self.get_output_dir('det_results/eval/voc_eval/', self.set_type)
- # dataset
- self.dataset = VOCDataset(
- data_dir=data_dir,
- image_sets=[('2007', set_type)],
- is_train=False)
-
- def evaluate(self, net):
- net.eval()
- num_images = len(self.dataset)
- # all detections are collected into:
- # all_boxes[cls][image] = N x 5 array of detections in
- # (x1, y1, x2, y2, score)
- self.all_boxes = [[[] for _ in range(num_images)]
- for _ in range(len(self.labelmap))]
- # timers
- det_file = os.path.join(self.output_dir, 'detections.pkl')
- for i in range(num_images):
- img, _ = self.dataset.pull_image(i)
- orig_h, orig_w = img.shape[:2]
- # preprocess
- x, _, deltas = self.transform(img)
- x = x.unsqueeze(0).to(self.device) / 255.
- # forward
- t0 = time.time()
- bboxes, scores, labels = net(x)
- detect_time = time.time() - t0
- # rescale bboxes
- origin_img_size = [orig_h, orig_w]
- cur_img_size = [*x.shape[-2:]]
- bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
- for j in range(len(self.labelmap)):
- inds = np.where(labels == j)[0]
- if len(inds) == 0:
- self.all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
- continue
- c_bboxes = bboxes[inds]
- c_scores = scores[inds]
- c_dets = np.hstack((c_bboxes,
- c_scores[:, np.newaxis])).astype(np.float32,
- copy=False)
- self.all_boxes[j][i] = c_dets
- if i % 500 == 0:
- print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1, num_images, detect_time))
- with open(det_file, 'wb') as f:
- pickle.dump(self.all_boxes, f, pickle.HIGHEST_PROTOCOL)
- print('Evaluating detections')
- self.evaluate_detections(self.all_boxes)
- print('Mean AP: ', self.map)
-
- def parse_rec(self, filename):
- """ Parse a PASCAL VOC xml file """
- tree = ET.parse(filename)
- objects = []
- for obj in tree.findall('object'):
- obj_struct = {}
- obj_struct['name'] = obj.find('name').text
- obj_struct['pose'] = obj.find('pose').text
- obj_struct['truncated'] = int(obj.find('truncated').text)
- obj_struct['difficult'] = int(obj.find('difficult').text)
- bbox = obj.find('bndbox')
- obj_struct['bbox'] = [int(bbox.find('xmin').text),
- int(bbox.find('ymin').text),
- int(bbox.find('xmax').text),
- int(bbox.find('ymax').text)]
- objects.append(obj_struct)
- return objects
- def get_output_dir(self, name, phase):
- """Return the directory where experimental artifacts are placed.
- If the directory does not exist, it is created.
- A canonical path is built using the name from an imdb and a network
- (if not None).
- """
- filedir = os.path.join(name, phase)
- if not os.path.exists(filedir):
- os.makedirs(filedir, exist_ok=True)
- return filedir
- def get_voc_results_file_template(self, cls):
- # VOCdevkit/VOC2007/results/det_test_aeroplane.txt
- filename = 'det_' + self.set_type + '_%s.txt' % (cls)
- filedir = os.path.join(self.devkit_path, 'results')
- if not os.path.exists(filedir):
- os.makedirs(filedir)
- path = os.path.join(filedir, filename)
- return path
- def write_voc_results_file(self, all_boxes):
- for cls_ind, cls in enumerate(self.labelmap):
- if self.display:
- print('Writing {:s} VOC results file'.format(cls))
- filename = self.get_voc_results_file_template(cls)
- with open(filename, 'wt') as f:
- for im_ind, index in enumerate(self.dataset.ids):
- dets = all_boxes[cls_ind][im_ind]
- if dets == []:
- continue
- # the VOCdevkit expects 1-based indices
- for k in range(dets.shape[0]):
- f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
- format(index[1], dets[k, -1],
- dets[k, 0] + 1, dets[k, 1] + 1,
- dets[k, 2] + 1, dets[k, 3] + 1))
- def do_python_eval(self, use_07=True):
- cachedir = os.path.join(self.devkit_path, 'annotations_cache')
- aps = []
- # The PASCAL VOC metric changed in 2010
- use_07_metric = use_07
- print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
- if not os.path.isdir(self.output_dir):
- os.mkdir(self.output_dir)
- for i, cls in enumerate(self.labelmap):
- filename = self.get_voc_results_file_template(cls)
- rec, prec, ap = self.voc_eval(detpath=filename,
- classname=cls,
- cachedir=cachedir,
- ovthresh=0.5,
- use_07_metric=use_07_metric
- )
- aps += [ap]
- print('AP for {} = {:.4f}'.format(cls, ap))
- with open(os.path.join(self.output_dir, cls + '_pr.pkl'), 'wb') as f:
- pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
- if self.display:
- self.map = np.mean(aps)
- print('Mean AP = {:.4f}'.format(np.mean(aps)))
- print('~~~~~~~~')
- print('Results:')
- for ap in aps:
- print('{:.3f}'.format(ap))
- print('{:.3f}'.format(np.mean(aps)))
- print('~~~~~~~~')
- print('')
- print('--------------------------------------------------------------')
- print('Results computed with the **unofficial** Python eval code.')
- print('Results should be very close to the official MATLAB eval code.')
- print('--------------------------------------------------------------')
- else:
- self.map = np.mean(aps)
- print('Mean AP = {:.4f}'.format(np.mean(aps)))
- def voc_ap(self, rec, prec, use_07_metric=True):
- """ ap = voc_ap(rec, prec, [use_07_metric])
- Compute VOC AP given precision and recall.
- If use_07_metric is true, uses the
- VOC 07 11 point method (default:True).
- """
- if use_07_metric:
- # 11 point metric
- ap = 0.
- for t in np.arange(0., 1.1, 0.1):
- if np.sum(rec >= t) == 0:
- p = 0
- else:
- p = np.max(prec[rec >= t])
- ap = ap + p / 11.
- else:
- # correct AP calculation
- # first append sentinel values at the end
- mrec = np.concatenate(([0.], rec, [1.]))
- mpre = np.concatenate(([0.], prec, [0.]))
- # compute the precision envelope
- for i in range(mpre.size - 1, 0, -1):
- mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
- # to calculate area under PR curve, look for points
- # where X axis (recall) changes value
- i = np.where(mrec[1:] != mrec[:-1])[0]
- # and sum (\Delta recall) * prec
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
- return ap
- def voc_eval(self, detpath, classname, cachedir, ovthresh=0.5, use_07_metric=True):
- if not os.path.isdir(cachedir):
- os.mkdir(cachedir)
- cachefile = os.path.join(cachedir, 'annots.pkl')
- # read list of images
- with open(self.imgsetpath, 'r') as f:
- lines = f.readlines()
- imagenames = [x.strip() for x in lines]
- if not os.path.isfile(cachefile):
- # load annots
- recs = {}
- for i, imagename in enumerate(imagenames):
- recs[imagename] = self.parse_rec(self.annopath % (imagename))
- if i % 100 == 0 and self.display:
- print('Reading annotation for {:d}/{:d}'.format(
- i + 1, len(imagenames)))
- # save
- if self.display:
- print('Saving cached annotations to {:s}'.format(cachefile))
- with open(cachefile, 'wb') as f:
- pickle.dump(recs, f)
- else:
- # load
- with open(cachefile, 'rb') as f:
- recs = pickle.load(f)
- # extract gt objects for this class
- class_recs = {}
- npos = 0
- for imagename in imagenames:
- R = [obj for obj in recs[imagename] if obj['name'] == classname]
- bbox = np.array([x['bbox'] for x in R])
- difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
- det = [False] * len(R)
- npos = npos + sum(~difficult)
- class_recs[imagename] = {'bbox': bbox,
- 'difficult': difficult,
- 'det': det}
- # read dets
- detfile = detpath.format(classname)
- with open(detfile, 'r') as f:
- lines = f.readlines()
- if any(lines) == 1:
- splitlines = [x.strip().split(' ') for x in lines]
- image_ids = [x[0] for x in splitlines]
- confidence = np.array([float(x[1]) for x in splitlines])
- BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
- # sort by confidence
- sorted_ind = np.argsort(-confidence)
- sorted_scores = np.sort(-confidence)
- BB = BB[sorted_ind, :]
- image_ids = [image_ids[x] for x in sorted_ind]
- # go down dets and mark TPs and FPs
- nd = len(image_ids)
- tp = np.zeros(nd)
- fp = np.zeros(nd)
- for d in range(nd):
- R = class_recs[image_ids[d]]
- bb = BB[d, :].astype(float)
- ovmax = -np.inf
- BBGT = R['bbox'].astype(float)
- if BBGT.size > 0:
- # compute overlaps
- # intersection
- ixmin = np.maximum(BBGT[:, 0], bb[0])
- iymin = np.maximum(BBGT[:, 1], bb[1])
- ixmax = np.minimum(BBGT[:, 2], bb[2])
- iymax = np.minimum(BBGT[:, 3], bb[3])
- iw = np.maximum(ixmax - ixmin, 0.)
- ih = np.maximum(iymax - iymin, 0.)
- inters = iw * ih
- uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) +
- (BBGT[:, 2] - BBGT[:, 0]) *
- (BBGT[:, 3] - BBGT[:, 1]) - inters)
- overlaps = inters / uni
- ovmax = np.max(overlaps)
- jmax = np.argmax(overlaps)
- if ovmax > ovthresh:
- if not R['difficult'][jmax]:
- if not R['det'][jmax]:
- tp[d] = 1.
- R['det'][jmax] = 1
- else:
- fp[d] = 1.
- else:
- fp[d] = 1.
- # compute precision recall
- fp = np.cumsum(fp)
- tp = np.cumsum(tp)
- rec = tp / float(npos)
- # avoid divide by zero in case the first detection matches a difficult
- # ground truth
- prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
- ap = self.voc_ap(rec, prec, use_07_metric)
- else:
- rec = -1.
- prec = -1.
- ap = -1.
- return rec, prec, ap
- def evaluate_detections(self, box_list):
- self.write_voc_results_file(box_list)
- self.do_python_eval()
- if __name__ == '__main__':
- pass
|