engine.py 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # YOLOv8 Trainer
  19. class Yolov8Trainer(object):
  20. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  21. # ------------------- basic parameters -------------------
  22. self.args = args
  23. self.epoch = 0
  24. self.best_map = -1.
  25. self.last_opt_step = 0
  26. self.no_aug_epoch = args.no_aug_epoch
  27. self.clip_grad = 10
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.second_stage = False
  33. # path to save model
  34. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  35. os.makedirs(self.path_to_save, exist_ok=True)
  36. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  37. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  38. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  39. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  40. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  41. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  42. self.data_cfg = data_cfg
  43. self.model_cfg = model_cfg
  44. self.trans_cfg = trans_cfg
  45. # ---------------------------- Build Transform ----------------------------
  46. self.train_transform, self.trans_cfg = build_transform(
  47. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  48. self.val_transform, _ = build_transform(
  49. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  50. # ---------------------------- Build Dataset & Dataloader ----------------------------
  51. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  52. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  53. # ---------------------------- Build Evaluator ----------------------------
  54. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  55. # ---------------------------- Build Grad. Scaler ----------------------------
  56. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  57. # ---------------------------- Build Optimizer ----------------------------
  58. accumulate = max(1, round(64 / self.args.batch_size))
  59. print('Grad Accumulate: {}'.format(accumulate))
  60. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  61. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  62. # ---------------------------- Build LR Scheduler ----------------------------
  63. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  64. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  65. if self.args.resume:
  66. self.lr_scheduler.step()
  67. # ---------------------------- Build Model-EMA ----------------------------
  68. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  69. print('Build ModelEMA ...')
  70. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  71. else:
  72. self.model_ema = None
  73. def train(self, model):
  74. for epoch in range(self.start_epoch, self.args.max_epoch):
  75. if self.args.distributed:
  76. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  77. # check second stage
  78. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  79. self.check_second_stage()
  80. # save model of the last mosaic epoch
  81. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  82. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  83. if not os.path.exists(checkpoint_path):
  84. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  85. torch.save({'model': model.state_dict(),
  86. 'mAP': round(self.evaluator.map*100, 1),
  87. 'optimizer': self.optimizer.state_dict(),
  88. 'epoch': self.epoch,
  89. 'args': self.args},
  90. checkpoint_path)
  91. # train one epoch
  92. self.epoch = epoch
  93. self.train_one_epoch(model)
  94. # eval one epoch
  95. if self.heavy_eval:
  96. model_eval = model.module if self.args.distributed else model
  97. self.eval(model_eval)
  98. else:
  99. model_eval = model.module if self.args.distributed else model
  100. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  101. self.eval(model_eval)
  102. def eval(self, model):
  103. # chech model
  104. model_eval = model if self.model_ema is None else self.model_ema.ema
  105. if distributed_utils.is_main_process():
  106. # check evaluator
  107. if self.evaluator is None:
  108. print('No evaluator ... save model and go on training.')
  109. print('Saving state, epoch: {}'.format(self.epoch + 1))
  110. weight_name = '{}_no_eval.pth'.format(self.args.model)
  111. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  112. torch.save({'model': model_eval.state_dict(),
  113. 'mAP': -1.,
  114. 'optimizer': self.optimizer.state_dict(),
  115. 'epoch': self.epoch,
  116. 'args': self.args},
  117. checkpoint_path)
  118. else:
  119. print('eval ...')
  120. # set eval mode
  121. model_eval.trainable = False
  122. model_eval.eval()
  123. # evaluate
  124. with torch.no_grad():
  125. self.evaluator.evaluate(model_eval)
  126. # save model
  127. cur_map = self.evaluator.map
  128. if cur_map > self.best_map:
  129. # update best-map
  130. self.best_map = cur_map
  131. # save model
  132. print('Saving state, epoch:', self.epoch + 1)
  133. weight_name = '{}_best.pth'.format(self.args.model)
  134. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  135. torch.save({'model': model_eval.state_dict(),
  136. 'mAP': round(self.best_map*100, 1),
  137. 'optimizer': self.optimizer.state_dict(),
  138. 'epoch': self.epoch,
  139. 'args': self.args},
  140. checkpoint_path)
  141. # set train mode.
  142. model_eval.trainable = True
  143. model_eval.train()
  144. if self.args.distributed:
  145. # wait for all processes to synchronize
  146. dist.barrier()
  147. def train_one_epoch(self, model):
  148. # basic parameters
  149. epoch_size = len(self.train_loader)
  150. img_size = self.args.img_size
  151. t0 = time.time()
  152. nw = epoch_size * self.args.wp_epoch
  153. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  154. # train one epoch
  155. for iter_i, (images, targets) in enumerate(self.train_loader):
  156. ni = iter_i + self.epoch * epoch_size
  157. # Warmup
  158. if ni <= nw:
  159. xi = [0, nw] # x interp
  160. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  161. for j, x in enumerate(self.optimizer.param_groups):
  162. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  163. x['lr'] = np.interp(
  164. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  165. if 'momentum' in x:
  166. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  167. # to device
  168. images = images.to(self.device, non_blocking=True).float() / 255.
  169. # Multi scale
  170. if self.args.multi_scale:
  171. images, targets, img_size = self.rescale_image_targets(
  172. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  173. else:
  174. targets = self.refine_targets(targets, self.args.min_box_size)
  175. # visualize train targets
  176. if self.args.vis_tgt:
  177. vis_data(images*255, targets)
  178. # inference
  179. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  180. outputs = model(images)
  181. # loss
  182. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  183. losses = loss_dict['losses']
  184. losses *= images.shape[0] # loss * bs
  185. # reduce
  186. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  187. # gradient averaged between devices in DDP mode
  188. losses *= distributed_utils.get_world_size()
  189. # backward
  190. self.scaler.scale(losses).backward()
  191. # Optimize
  192. if ni - self.last_opt_step >= accumulate:
  193. if self.clip_grad > 0:
  194. # unscale gradients
  195. self.scaler.unscale_(self.optimizer)
  196. # clip gradients
  197. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  198. # optimizer.step
  199. self.scaler.step(self.optimizer)
  200. self.scaler.update()
  201. self.optimizer.zero_grad()
  202. # ema
  203. if self.model_ema is not None:
  204. self.model_ema.update(model)
  205. self.last_opt_step = ni
  206. # display
  207. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  208. t1 = time.time()
  209. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  210. # basic infor
  211. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  212. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  213. log += '[lr: {:.6f}]'.format(cur_lr[2])
  214. # loss infor
  215. for k in loss_dict_reduced.keys():
  216. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  217. # other infor
  218. log += '[time: {:.2f}]'.format(t1 - t0)
  219. log += '[size: {}]'.format(img_size)
  220. # print log infor
  221. print(log, flush=True)
  222. t0 = time.time()
  223. self.lr_scheduler.step()
  224. def check_second_stage(self):
  225. # set second stage
  226. print('============== Second stage of Training ==============')
  227. self.second_stage = True
  228. # close mosaic augmentation
  229. if self.train_loader.dataset.mosaic_prob > 0.:
  230. print(' - Close < Mosaic Augmentation > ...')
  231. self.train_loader.dataset.mosaic_prob = 0.
  232. self.heavy_eval = True
  233. # close mixup augmentation
  234. if self.train_loader.dataset.mixup_prob > 0.:
  235. print(' - Close < Mixup Augmentation > ...')
  236. self.train_loader.dataset.mixup_prob = 0.
  237. self.heavy_eval = True
  238. # close rotation augmentation
  239. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  240. print(' - Close < degress of rotation > ...')
  241. self.trans_cfg['degrees'] = 0.0
  242. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  243. print(' - Close < shear of rotation >...')
  244. self.trans_cfg['shear'] = 0.0
  245. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  246. print(' - Close < perspective of rotation > ...')
  247. self.trans_cfg['perspective'] = 0.0
  248. # close random affine
  249. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  250. print(' - Close < translate of affine > ...')
  251. self.trans_cfg['translate'] = 0.0
  252. if 'scale' in self.trans_cfg.keys():
  253. print(' - Close < scale of affine >...')
  254. self.trans_cfg['scale'] = [1.0, 1.0]
  255. # build a new transform for second stage
  256. print(' - Rebuild transforms ...')
  257. self.train_transform, self.trans_cfg = build_transform(
  258. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  259. self.train_loader.dataset.transform = self.train_transform
  260. def refine_targets(self, targets, min_box_size):
  261. # rescale targets
  262. for tgt in targets:
  263. boxes = tgt["boxes"].clone()
  264. labels = tgt["labels"].clone()
  265. # refine tgt
  266. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  267. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  268. keep = (min_tgt_size >= min_box_size)
  269. tgt["boxes"] = boxes[keep]
  270. tgt["labels"] = labels[keep]
  271. return targets
  272. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  273. """
  274. Deployed for Multi scale trick.
  275. """
  276. if isinstance(stride, int):
  277. max_stride = stride
  278. elif isinstance(stride, list):
  279. max_stride = max(stride)
  280. # During training phase, the shape of input image is square.
  281. old_img_size = images.shape[-1]
  282. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  283. new_img_size = new_img_size // max_stride * max_stride # size
  284. if new_img_size / old_img_size != 1:
  285. # interpolate
  286. images = torch.nn.functional.interpolate(
  287. input=images,
  288. size=new_img_size,
  289. mode='bilinear',
  290. align_corners=False)
  291. # rescale targets
  292. for tgt in targets:
  293. boxes = tgt["boxes"].clone()
  294. labels = tgt["labels"].clone()
  295. boxes = torch.clamp(boxes, 0, old_img_size)
  296. # rescale box
  297. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  298. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  299. # refine tgt
  300. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  301. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  302. keep = (min_tgt_size >= min_box_size)
  303. tgt["boxes"] = boxes[keep]
  304. tgt["labels"] = labels[keep]
  305. return images, targets, new_img_size
  306. # YOLOX Trainer
  307. class YoloxTrainer(object):
  308. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  309. # ------------------- basic parameters -------------------
  310. self.args = args
  311. self.epoch = 0
  312. self.best_map = -1.
  313. self.device = device
  314. self.criterion = criterion
  315. self.world_size = world_size
  316. self.grad_accumulate = args.grad_accumulate
  317. self.no_aug_epoch = args.no_aug_epoch
  318. self.heavy_eval = False
  319. # weak augmentatino stage
  320. self.second_stage = False
  321. self.third_stage = False
  322. self.second_stage_epoch = args.no_aug_epoch
  323. self.third_stage_epoch = args.no_aug_epoch // 2
  324. # path to save model
  325. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  326. os.makedirs(self.path_to_save, exist_ok=True)
  327. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  328. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  329. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  330. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  331. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  332. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  333. self.data_cfg = data_cfg
  334. self.model_cfg = model_cfg
  335. self.trans_cfg = trans_cfg
  336. # ---------------------------- Build Transform ----------------------------
  337. self.train_transform, self.trans_cfg = build_transform(
  338. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  339. self.val_transform, _ = build_transform(
  340. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  341. # ---------------------------- Build Dataset & Dataloader ----------------------------
  342. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  343. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  344. # ---------------------------- Build Evaluator ----------------------------
  345. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  346. # ---------------------------- Build Grad. Scaler ----------------------------
  347. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  348. # ---------------------------- Build Optimizer ----------------------------
  349. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  350. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  351. # ---------------------------- Build LR Scheduler ----------------------------
  352. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  353. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  354. if self.args.resume:
  355. self.lr_scheduler.step()
  356. # ---------------------------- Build Model-EMA ----------------------------
  357. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  358. print('Build ModelEMA ...')
  359. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  360. else:
  361. self.model_ema = None
  362. def train(self, model):
  363. for epoch in range(self.start_epoch, self.args.max_epoch):
  364. if self.args.distributed:
  365. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  366. # check second stage
  367. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  368. self.check_second_stage()
  369. # save model of the last mosaic epoch
  370. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  371. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  372. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  373. torch.save({'model': model.state_dict(),
  374. 'mAP': round(self.evaluator.map*100, 1),
  375. 'optimizer': self.optimizer.state_dict(),
  376. 'epoch': self.epoch,
  377. 'args': self.args},
  378. checkpoint_path)
  379. # check third stage
  380. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  381. self.check_third_stage()
  382. # save model of the last mosaic epoch
  383. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  384. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  385. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch + 1))
  386. torch.save({'model': model.state_dict(),
  387. 'mAP': round(self.evaluator.map*100, 1),
  388. 'optimizer': self.optimizer.state_dict(),
  389. 'epoch': self.epoch,
  390. 'args': self.args},
  391. checkpoint_path)
  392. # train one epoch
  393. self.epoch = epoch
  394. self.train_one_epoch(model)
  395. # eval one epoch
  396. if self.heavy_eval:
  397. model_eval = model.module if self.args.distributed else model
  398. self.eval(model_eval)
  399. else:
  400. model_eval = model.module if self.args.distributed else model
  401. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  402. self.eval(model_eval)
  403. def eval(self, model):
  404. # chech model
  405. model_eval = model if self.model_ema is None else self.model_ema.ema
  406. if distributed_utils.is_main_process():
  407. # check evaluator
  408. if self.evaluator is None:
  409. print('No evaluator ... save model and go on training.')
  410. print('Saving state, epoch: {}'.format(self.epoch + 1))
  411. weight_name = '{}_no_eval.pth'.format(self.args.model)
  412. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  413. torch.save({'model': model_eval.state_dict(),
  414. 'mAP': -1.,
  415. 'optimizer': self.optimizer.state_dict(),
  416. 'epoch': self.epoch,
  417. 'args': self.args},
  418. checkpoint_path)
  419. else:
  420. print('eval ...')
  421. # set eval mode
  422. model_eval.trainable = False
  423. model_eval.eval()
  424. # evaluate
  425. with torch.no_grad():
  426. self.evaluator.evaluate(model_eval)
  427. # save model
  428. cur_map = self.evaluator.map
  429. if cur_map > self.best_map:
  430. # update best-map
  431. self.best_map = cur_map
  432. # save model
  433. print('Saving state, epoch:', self.epoch + 1)
  434. weight_name = '{}_best.pth'.format(self.args.model)
  435. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  436. torch.save({'model': model_eval.state_dict(),
  437. 'mAP': round(self.best_map*100, 1),
  438. 'optimizer': self.optimizer.state_dict(),
  439. 'epoch': self.epoch,
  440. 'args': self.args},
  441. checkpoint_path)
  442. # set train mode.
  443. model_eval.trainable = True
  444. model_eval.train()
  445. if self.args.distributed:
  446. # wait for all processes to synchronize
  447. dist.barrier()
  448. def train_one_epoch(self, model):
  449. # basic parameters
  450. epoch_size = len(self.train_loader)
  451. img_size = self.args.img_size
  452. t0 = time.time()
  453. nw = epoch_size * self.args.wp_epoch
  454. # Train one epoch
  455. for iter_i, (images, targets) in enumerate(self.train_loader):
  456. ni = iter_i + self.epoch * epoch_size
  457. # Warmup
  458. if ni <= nw:
  459. xi = [0, nw] # x interp
  460. for j, x in enumerate(self.optimizer.param_groups):
  461. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  462. x['lr'] = np.interp(
  463. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  464. if 'momentum' in x:
  465. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  466. # To device
  467. images = images.to(self.device, non_blocking=True).float() / 255.
  468. # Multi scale
  469. if self.args.multi_scale and ni % 10 == 0:
  470. images, targets, img_size = self.rescale_image_targets(
  471. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  472. else:
  473. targets = self.refine_targets(targets, self.args.min_box_size)
  474. # Visualize train targets
  475. if self.args.vis_tgt:
  476. vis_data(images*255, targets)
  477. # Inference
  478. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  479. outputs = model(images)
  480. # Compute loss
  481. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  482. losses = loss_dict['losses']
  483. # Grad Accu
  484. if self.grad_accumulate > 1:
  485. losses /= self.grad_accumulate
  486. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  487. # Backward
  488. self.scaler.scale(losses).backward()
  489. # Optimize
  490. if ni % self.grad_accumulate == 0:
  491. self.scaler.step(self.optimizer)
  492. self.scaler.update()
  493. self.optimizer.zero_grad()
  494. # ema
  495. if self.model_ema is not None:
  496. self.model_ema.update(model)
  497. # Logs
  498. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  499. t1 = time.time()
  500. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  501. # basic infor
  502. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  503. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  504. log += '[lr: {:.6f}]'.format(cur_lr[2])
  505. # loss infor
  506. for k in loss_dict_reduced.keys():
  507. loss_val = loss_dict_reduced[k]
  508. if k == 'losses':
  509. loss_val *= self.grad_accumulate
  510. log += '[{}: {:.2f}]'.format(k, loss_val)
  511. # other infor
  512. log += '[time: {:.2f}]'.format(t1 - t0)
  513. log += '[size: {}]'.format(img_size)
  514. # print log infor
  515. print(log, flush=True)
  516. t0 = time.time()
  517. # LR Schedule
  518. if not self.second_stage:
  519. self.lr_scheduler.step()
  520. def check_second_stage(self):
  521. # set second stage
  522. print('============== Second stage of Training ==============')
  523. self.second_stage = True
  524. # close mosaic augmentation
  525. if self.train_loader.dataset.mosaic_prob > 0.:
  526. print(' - Close < Mosaic Augmentation > ...')
  527. self.train_loader.dataset.mosaic_prob = 0.
  528. self.heavy_eval = True
  529. # close mixup augmentation
  530. if self.train_loader.dataset.mixup_prob > 0.:
  531. print(' - Close < Mixup Augmentation > ...')
  532. self.train_loader.dataset.mixup_prob = 0.
  533. self.heavy_eval = True
  534. # close rotation augmentation
  535. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  536. print(' - Close < degress of rotation > ...')
  537. self.trans_cfg['degrees'] = 0.0
  538. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  539. print(' - Close < shear of rotation >...')
  540. self.trans_cfg['shear'] = 0.0
  541. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  542. print(' - Close < perspective of rotation > ...')
  543. self.trans_cfg['perspective'] = 0.0
  544. # build a new transform for second stage
  545. print(' - Rebuild transforms ...')
  546. self.train_transform, self.trans_cfg = build_transform(
  547. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  548. self.train_loader.dataset.transform = self.train_transform
  549. def check_third_stage(self):
  550. # set third stage
  551. print('============== Third stage of Training ==============')
  552. self.third_stage = True
  553. # close random affine
  554. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  555. print(' - Close < translate of affine > ...')
  556. self.trans_cfg['translate'] = 0.0
  557. if 'scale' in self.trans_cfg.keys():
  558. print(' - Close < scale of affine >...')
  559. self.trans_cfg['scale'] = [1.0, 1.0]
  560. # build a new transform for second stage
  561. print(' - Rebuild transforms ...')
  562. self.train_transform, self.trans_cfg = build_transform(
  563. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  564. self.train_loader.dataset.transform = self.train_transform
  565. def refine_targets(self, targets, min_box_size):
  566. # rescale targets
  567. for tgt in targets:
  568. boxes = tgt["boxes"].clone()
  569. labels = tgt["labels"].clone()
  570. # refine tgt
  571. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  572. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  573. keep = (min_tgt_size >= min_box_size)
  574. tgt["boxes"] = boxes[keep]
  575. tgt["labels"] = labels[keep]
  576. return targets
  577. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  578. """
  579. Deployed for Multi scale trick.
  580. """
  581. if isinstance(stride, int):
  582. max_stride = stride
  583. elif isinstance(stride, list):
  584. max_stride = max(stride)
  585. # During training phase, the shape of input image is square.
  586. old_img_size = images.shape[-1]
  587. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  588. new_img_size = new_img_size // max_stride * max_stride # size
  589. if new_img_size / old_img_size != 1:
  590. # interpolate
  591. images = torch.nn.functional.interpolate(
  592. input=images,
  593. size=new_img_size,
  594. mode='bilinear',
  595. align_corners=False)
  596. # rescale targets
  597. for tgt in targets:
  598. boxes = tgt["boxes"].clone()
  599. labels = tgt["labels"].clone()
  600. boxes = torch.clamp(boxes, 0, old_img_size)
  601. # rescale box
  602. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  603. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  604. # refine tgt
  605. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  606. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  607. keep = (min_tgt_size >= min_box_size)
  608. tgt["boxes"] = boxes[keep]
  609. tgt["labels"] = labels[keep]
  610. return images, targets, new_img_size
  611. # RTCDet Trainer
  612. class RTCTrainer(object):
  613. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  614. # ------------------- basic parameters -------------------
  615. self.args = args
  616. self.epoch = 0
  617. self.best_map = -1.
  618. self.device = device
  619. self.criterion = criterion
  620. self.world_size = world_size
  621. self.grad_accumulate = args.grad_accumulate
  622. self.clip_grad = 35
  623. self.heavy_eval = False
  624. # weak augmentatino stage
  625. self.second_stage = False
  626. self.third_stage = False
  627. self.second_stage_epoch = args.no_aug_epoch
  628. self.third_stage_epoch = args.no_aug_epoch // 2
  629. # path to save model
  630. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  631. os.makedirs(self.path_to_save, exist_ok=True)
  632. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  633. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  634. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  635. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  636. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  637. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  638. self.data_cfg = data_cfg
  639. self.model_cfg = model_cfg
  640. self.trans_cfg = trans_cfg
  641. # ---------------------------- Build Transform ----------------------------
  642. self.train_transform, self.trans_cfg = build_transform(
  643. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  644. self.val_transform, _ = build_transform(
  645. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  646. # ---------------------------- Build Dataset & Dataloader ----------------------------
  647. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  648. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  649. # ---------------------------- Build Evaluator ----------------------------
  650. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  651. # ---------------------------- Build Grad. Scaler ----------------------------
  652. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  653. # ---------------------------- Build Optimizer ----------------------------
  654. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  655. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  656. # ---------------------------- Build LR Scheduler ----------------------------
  657. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  658. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  659. if self.args.resume:
  660. self.lr_scheduler.step()
  661. # ---------------------------- Build Model-EMA ----------------------------
  662. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  663. print('Build ModelEMA ...')
  664. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  665. else:
  666. self.model_ema = None
  667. def train(self, model):
  668. for epoch in range(self.start_epoch, self.args.max_epoch):
  669. if self.args.distributed:
  670. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  671. # check second stage
  672. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  673. self.check_second_stage()
  674. # save model of the last mosaic epoch
  675. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  676. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  677. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  678. torch.save({'model': model.state_dict(),
  679. 'mAP': round(self.evaluator.map*100, 1),
  680. 'optimizer': self.optimizer.state_dict(),
  681. 'epoch': self.epoch,
  682. 'args': self.args},
  683. checkpoint_path)
  684. # check third stage
  685. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  686. self.check_third_stage()
  687. # save model of the last mosaic epoch
  688. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  689. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  690. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch + 1))
  691. torch.save({'model': model.state_dict(),
  692. 'mAP': round(self.evaluator.map*100, 1),
  693. 'optimizer': self.optimizer.state_dict(),
  694. 'epoch': self.epoch,
  695. 'args': self.args},
  696. checkpoint_path)
  697. # train one epoch
  698. self.epoch = epoch
  699. self.train_one_epoch(model)
  700. # eval one epoch
  701. if self.heavy_eval:
  702. model_eval = model.module if self.args.distributed else model
  703. self.eval(model_eval)
  704. else:
  705. model_eval = model.module if self.args.distributed else model
  706. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  707. self.eval(model_eval)
  708. def eval(self, model):
  709. # chech model
  710. model_eval = model if self.model_ema is None else self.model_ema.ema
  711. if distributed_utils.is_main_process():
  712. # check evaluator
  713. if self.evaluator is None:
  714. print('No evaluator ... save model and go on training.')
  715. print('Saving state, epoch: {}'.format(self.epoch + 1))
  716. weight_name = '{}_no_eval.pth'.format(self.args.model)
  717. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  718. torch.save({'model': model_eval.state_dict(),
  719. 'mAP': -1.,
  720. 'optimizer': self.optimizer.state_dict(),
  721. 'epoch': self.epoch,
  722. 'args': self.args},
  723. checkpoint_path)
  724. else:
  725. print('eval ...')
  726. # set eval mode
  727. model_eval.trainable = False
  728. model_eval.eval()
  729. # evaluate
  730. with torch.no_grad():
  731. self.evaluator.evaluate(model_eval)
  732. # save model
  733. cur_map = self.evaluator.map
  734. if cur_map > self.best_map:
  735. # update best-map
  736. self.best_map = cur_map
  737. # save model
  738. print('Saving state, epoch:', self.epoch + 1)
  739. weight_name = '{}_best.pth'.format(self.args.model)
  740. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  741. torch.save({'model': model_eval.state_dict(),
  742. 'mAP': round(self.best_map*100, 1),
  743. 'optimizer': self.optimizer.state_dict(),
  744. 'epoch': self.epoch,
  745. 'args': self.args},
  746. checkpoint_path)
  747. # set train mode.
  748. model_eval.trainable = True
  749. model_eval.train()
  750. if self.args.distributed:
  751. # wait for all processes to synchronize
  752. dist.barrier()
  753. def train_one_epoch(self, model):
  754. # basic parameters
  755. epoch_size = len(self.train_loader)
  756. img_size = self.args.img_size
  757. t0 = time.time()
  758. nw = epoch_size * self.args.wp_epoch
  759. # Train one epoch
  760. for iter_i, (images, targets) in enumerate(self.train_loader):
  761. ni = iter_i + self.epoch * epoch_size
  762. # Warmup
  763. if ni <= nw:
  764. xi = [0, nw] # x interp
  765. for j, x in enumerate(self.optimizer.param_groups):
  766. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  767. x['lr'] = np.interp(
  768. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  769. if 'momentum' in x:
  770. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  771. # To device
  772. images = images.to(self.device, non_blocking=True).float() / 255.
  773. # Multi scale
  774. if self.args.multi_scale:
  775. images, targets, img_size = self.rescale_image_targets(
  776. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  777. else:
  778. targets = self.refine_targets(targets, self.args.min_box_size)
  779. # Visualize train targets
  780. if self.args.vis_tgt:
  781. vis_data(images*255, targets)
  782. # Inference
  783. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  784. outputs = model(images)
  785. # Compute loss
  786. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  787. losses = loss_dict['losses']
  788. # Grad Accumulate
  789. if self.grad_accumulate > 1:
  790. losses /= self.grad_accumulate
  791. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  792. # Backward
  793. self.scaler.scale(losses).backward()
  794. # Optimize
  795. if ni % self.grad_accumulate == 0:
  796. grad_norm = None
  797. if self.clip_grad > 0:
  798. # unscale gradients
  799. self.scaler.unscale_(self.optimizer)
  800. # clip gradients
  801. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  802. # optimizer.step
  803. self.scaler.step(self.optimizer)
  804. self.scaler.update()
  805. self.optimizer.zero_grad()
  806. # ema
  807. if self.model_ema is not None:
  808. self.model_ema.update(model)
  809. # Logs
  810. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  811. t1 = time.time()
  812. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  813. # basic infor
  814. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  815. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  816. log += '[lr: {:.6f}]'.format(cur_lr[2])
  817. # loss infor
  818. for k in loss_dict_reduced.keys():
  819. loss_val = loss_dict_reduced[k]
  820. if k == 'losses':
  821. loss_val *= self.grad_accumulate
  822. log += '[{}: {:.2f}]'.format(k, loss_val)
  823. # other infor
  824. log += '[grad_norm: {:.2f}]'.format(grad_norm)
  825. log += '[time: {:.2f}]'.format(t1 - t0)
  826. log += '[size: {}]'.format(img_size)
  827. # print log infor
  828. print(log, flush=True)
  829. t0 = time.time()
  830. # LR Schedule
  831. if not self.second_stage:
  832. self.lr_scheduler.step()
  833. def refine_targets(self, targets, min_box_size):
  834. # rescale targets
  835. for tgt in targets:
  836. boxes = tgt["boxes"].clone()
  837. labels = tgt["labels"].clone()
  838. # refine tgt
  839. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  840. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  841. keep = (min_tgt_size >= min_box_size)
  842. tgt["boxes"] = boxes[keep]
  843. tgt["labels"] = labels[keep]
  844. return targets
  845. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  846. """
  847. Deployed for Multi scale trick.
  848. """
  849. if isinstance(stride, int):
  850. max_stride = stride
  851. elif isinstance(stride, list):
  852. max_stride = max(stride)
  853. # During training phase, the shape of input image is square.
  854. old_img_size = images.shape[-1]
  855. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  856. new_img_size = new_img_size // max_stride * max_stride # size
  857. if new_img_size / old_img_size != 1:
  858. # interpolate
  859. images = torch.nn.functional.interpolate(
  860. input=images,
  861. size=new_img_size,
  862. mode='bilinear',
  863. align_corners=False)
  864. # rescale targets
  865. for tgt in targets:
  866. boxes = tgt["boxes"].clone()
  867. labels = tgt["labels"].clone()
  868. boxes = torch.clamp(boxes, 0, old_img_size)
  869. # rescale box
  870. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  871. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  872. # refine tgt
  873. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  874. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  875. keep = (min_tgt_size >= min_box_size)
  876. tgt["boxes"] = boxes[keep]
  877. tgt["labels"] = labels[keep]
  878. return images, targets, new_img_size
  879. def check_second_stage(self):
  880. # set second stage
  881. print('============== Second stage of Training ==============')
  882. self.second_stage = True
  883. # close mosaic augmentation
  884. if self.train_loader.dataset.mosaic_prob > 0.:
  885. print(' - Close < Mosaic Augmentation > ...')
  886. self.train_loader.dataset.mosaic_prob = 0.
  887. self.heavy_eval = True
  888. # close mixup augmentation
  889. if self.train_loader.dataset.mixup_prob > 0.:
  890. print(' - Close < Mixup Augmentation > ...')
  891. self.train_loader.dataset.mixup_prob = 0.
  892. self.heavy_eval = True
  893. # close rotation augmentation
  894. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  895. print(' - Close < degress of rotation > ...')
  896. self.trans_cfg['degrees'] = 0.0
  897. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  898. print(' - Close < shear of rotation >...')
  899. self.trans_cfg['shear'] = 0.0
  900. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  901. print(' - Close < perspective of rotation > ...')
  902. self.trans_cfg['perspective'] = 0.0
  903. # build a new transform for second stage
  904. print(' - Rebuild transforms ...')
  905. self.train_transform, self.trans_cfg = build_transform(
  906. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  907. self.train_loader.dataset.transform = self.train_transform
  908. def check_third_stage(self):
  909. # set third stage
  910. print('============== Third stage of Training ==============')
  911. self.third_stage = True
  912. # close random affine
  913. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  914. print(' - Close < translate of affine > ...')
  915. self.trans_cfg['translate'] = 0.0
  916. if 'scale' in self.trans_cfg.keys():
  917. print(' - Close < scale of affine >...')
  918. self.trans_cfg['scale'] = [1.0, 1.0]
  919. # build a new transform for second stage
  920. print(' - Rebuild transforms ...')
  921. self.train_transform, self.trans_cfg = build_transform(
  922. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  923. self.train_loader.dataset.transform = self.train_transform
  924. # RTRDet Trainer
  925. class RTRTrainer(object):
  926. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  927. # ------------------- Basic parameters -------------------
  928. self.args = args
  929. self.epoch = 0
  930. self.best_map = -1.
  931. self.device = device
  932. self.criterion = criterion
  933. self.world_size = world_size
  934. self.grad_accumulate = args.grad_accumulate
  935. self.clip_grad = 35
  936. self.heavy_eval = False
  937. # weak augmentatino stage
  938. self.second_stage = False
  939. self.third_stage = False
  940. self.second_stage_epoch = args.no_aug_epoch
  941. self.third_stage_epoch = args.no_aug_epoch // 2
  942. # path to save model
  943. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  944. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  945. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  946. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  947. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  948. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  949. self.data_cfg = data_cfg
  950. self.model_cfg = model_cfg
  951. self.trans_cfg = trans_cfg
  952. # ---------------------------- Build Transform ----------------------------
  953. self.train_transform, self.trans_cfg = build_transform(
  954. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  955. self.val_transform, _ = build_transform(
  956. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  957. # ---------------------------- Build Dataset & Dataloader ----------------------------
  958. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  959. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  960. # ---------------------------- Build Evaluator ----------------------------
  961. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  962. # ---------------------------- Build Grad. Scaler ----------------------------
  963. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  964. # ---------------------------- Build Optimizer ----------------------------
  965. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  966. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  967. # ---------------------------- Build LR Scheduler ----------------------------
  968. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  969. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  970. if self.args.resume:
  971. self.lr_scheduler.step()
  972. # ---------------------------- Build Model-EMA ----------------------------
  973. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  974. print('Build ModelEMA ...')
  975. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  976. else:
  977. self.model_ema = None
  978. def train(self, model):
  979. for epoch in range(self.start_epoch, self.args.max_epoch):
  980. if self.args.distributed:
  981. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  982. # check second stage
  983. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  984. self.check_second_stage()
  985. # save model of the last mosaic epoch
  986. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  987. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  988. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch + 1))
  989. torch.save({'model': model.state_dict(),
  990. 'mAP': round(self.evaluator.map*100, 1),
  991. 'optimizer': self.optimizer.state_dict(),
  992. 'epoch': self.epoch,
  993. 'args': self.args},
  994. checkpoint_path)
  995. # check third stage
  996. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  997. self.check_third_stage()
  998. # save model of the last mosaic epoch
  999. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1000. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1001. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch + 1))
  1002. torch.save({'model': model.state_dict(),
  1003. 'mAP': round(self.evaluator.map*100, 1),
  1004. 'optimizer': self.optimizer.state_dict(),
  1005. 'epoch': self.epoch,
  1006. 'args': self.args},
  1007. checkpoint_path)
  1008. # train one epoch
  1009. self.epoch = epoch
  1010. self.train_one_epoch(model)
  1011. # eval one epoch
  1012. if self.heavy_eval:
  1013. model_eval = model.module if self.args.distributed else model
  1014. self.eval(model_eval)
  1015. else:
  1016. model_eval = model.module if self.args.distributed else model
  1017. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1018. self.eval(model_eval)
  1019. def eval(self, model):
  1020. # chech model
  1021. model_eval = model if self.model_ema is None else self.model_ema.ema
  1022. if distributed_utils.is_main_process():
  1023. # check evaluator
  1024. if self.evaluator is None:
  1025. print('No evaluator ... save model and go on training.')
  1026. print('Saving state, epoch: {}'.format(self.epoch + 1))
  1027. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1028. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1029. torch.save({'model': model_eval.state_dict(),
  1030. 'mAP': -1.,
  1031. 'optimizer': self.optimizer.state_dict(),
  1032. 'epoch': self.epoch,
  1033. 'args': self.args},
  1034. checkpoint_path)
  1035. else:
  1036. print('eval ...')
  1037. # set eval mode
  1038. model_eval.trainable = False
  1039. model_eval.eval()
  1040. # evaluate
  1041. with torch.no_grad():
  1042. self.evaluator.evaluate(model_eval)
  1043. # save model
  1044. cur_map = self.evaluator.map
  1045. if cur_map > self.best_map:
  1046. # update best-map
  1047. self.best_map = cur_map
  1048. # save model
  1049. print('Saving state, epoch:', self.epoch + 1)
  1050. weight_name = '{}_best.pth'.format(self.args.model)
  1051. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1052. torch.save({'model': model_eval.state_dict(),
  1053. 'mAP': round(self.best_map*100, 1),
  1054. 'optimizer': self.optimizer.state_dict(),
  1055. 'epoch': self.epoch,
  1056. 'args': self.args},
  1057. checkpoint_path)
  1058. # set train mode.
  1059. model_eval.trainable = True
  1060. model_eval.train()
  1061. if self.args.distributed:
  1062. # wait for all processes to synchronize
  1063. dist.barrier()
  1064. def train_one_epoch(self, model):
  1065. # basic parameters
  1066. epoch_size = len(self.train_loader)
  1067. img_size = self.args.img_size
  1068. t0 = time.time()
  1069. nw = epoch_size * self.args.wp_epoch
  1070. # Train one epoch
  1071. for iter_i, (images, targets) in enumerate(self.train_loader):
  1072. ni = iter_i + self.epoch * epoch_size
  1073. # Warmup
  1074. if ni <= nw:
  1075. xi = [0, nw] # x interp
  1076. for j, x in enumerate(self.optimizer.param_groups):
  1077. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1078. x['lr'] = np.interp( ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1079. if 'momentum' in x:
  1080. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1081. # To device
  1082. images = images.to(self.device, non_blocking=True).float() / 255.
  1083. # Multi scale
  1084. if self.args.multi_scale:
  1085. images, targets, img_size = self.rescale_image_targets(
  1086. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1087. else:
  1088. targets = self.refine_targets(targets, self.args.min_box_size)
  1089. # Normalize bbox
  1090. targets = self.normalize_bbox(targets, img_size)
  1091. # Visualize train targets
  1092. if self.args.vis_tgt:
  1093. vis_data(images*255, targets)
  1094. # Inference
  1095. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1096. outputs = model(images)
  1097. # Compute loss
  1098. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  1099. losses = loss_dict['losses']
  1100. # Grad Accumulate
  1101. if self.grad_accumulate > 1:
  1102. losses /= self.grad_accumulate
  1103. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1104. # Backward
  1105. self.scaler.scale(losses).backward()
  1106. # Optimize
  1107. if ni % self.grad_accumulate == 0:
  1108. grad_norm = None
  1109. if self.clip_grad > 0:
  1110. # unscale gradients
  1111. self.scaler.unscale_(self.optimizer)
  1112. # clip gradients
  1113. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1114. # optimizer.step
  1115. self.scaler.step(self.optimizer)
  1116. self.scaler.update()
  1117. self.optimizer.zero_grad()
  1118. # ema
  1119. if self.model_ema is not None:
  1120. self.model_ema.update(model)
  1121. # Logs
  1122. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  1123. t1 = time.time()
  1124. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  1125. # basic infor
  1126. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  1127. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1128. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1129. # loss infor
  1130. for k in loss_dict_reduced.keys():
  1131. loss_val = loss_dict_reduced[k]
  1132. if k == 'losses':
  1133. loss_val *= self.grad_accumulate
  1134. log += '[{}: {:.2f}]'.format(k, loss_val)
  1135. # other infor
  1136. log += '[grad_norm: {:.2f}]'.format(grad_norm)
  1137. log += '[time: {:.2f}]'.format(t1 - t0)
  1138. log += '[size: {}]'.format(img_size)
  1139. # print log infor
  1140. print(log, flush=True)
  1141. t0 = time.time()
  1142. # LR Schedule
  1143. if not self.second_stage:
  1144. self.lr_scheduler.step()
  1145. def refine_targets(self, targets, min_box_size):
  1146. # rescale targets
  1147. for tgt in targets:
  1148. boxes = tgt["boxes"].clone()
  1149. labels = tgt["labels"].clone()
  1150. # refine tgt
  1151. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1152. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1153. keep = (min_tgt_size >= min_box_size)
  1154. tgt["boxes"] = boxes[keep]
  1155. tgt["labels"] = labels[keep]
  1156. return targets
  1157. def normalize_bbox(self, targets, img_size):
  1158. # normalize targets
  1159. for tgt in targets:
  1160. tgt["boxes"] /= img_size
  1161. return targets
  1162. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1163. """
  1164. Deployed for Multi scale trick.
  1165. """
  1166. if isinstance(stride, int):
  1167. max_stride = stride
  1168. elif isinstance(stride, list):
  1169. max_stride = max(stride)
  1170. # During training phase, the shape of input image is square.
  1171. old_img_size = images.shape[-1]
  1172. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1173. new_img_size = new_img_size // max_stride * max_stride # size
  1174. if new_img_size / old_img_size != 1:
  1175. # interpolate
  1176. images = torch.nn.functional.interpolate(
  1177. input=images,
  1178. size=new_img_size,
  1179. mode='bilinear',
  1180. align_corners=False)
  1181. # rescale targets
  1182. for tgt in targets:
  1183. boxes = tgt["boxes"].clone()
  1184. labels = tgt["labels"].clone()
  1185. boxes = torch.clamp(boxes, 0, old_img_size)
  1186. # rescale box
  1187. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1188. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1189. # refine tgt
  1190. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1191. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1192. keep = (min_tgt_size >= min_box_size)
  1193. tgt["boxes"] = boxes[keep]
  1194. tgt["labels"] = labels[keep]
  1195. return images, targets, new_img_size
  1196. def check_second_stage(self):
  1197. # set second stage
  1198. print('============== Second stage of Training ==============')
  1199. self.second_stage = True
  1200. # close mosaic augmentation
  1201. if self.train_loader.dataset.mosaic_prob > 0.:
  1202. print(' - Close < Mosaic Augmentation > ...')
  1203. self.train_loader.dataset.mosaic_prob = 0.
  1204. self.heavy_eval = True
  1205. # close mixup augmentation
  1206. if self.train_loader.dataset.mixup_prob > 0.:
  1207. print(' - Close < Mixup Augmentation > ...')
  1208. self.train_loader.dataset.mixup_prob = 0.
  1209. self.heavy_eval = True
  1210. # close rotation augmentation
  1211. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1212. print(' - Close < degress of rotation > ...')
  1213. self.trans_cfg['degrees'] = 0.0
  1214. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1215. print(' - Close < shear of rotation >...')
  1216. self.trans_cfg['shear'] = 0.0
  1217. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1218. print(' - Close < perspective of rotation > ...')
  1219. self.trans_cfg['perspective'] = 0.0
  1220. # build a new transform for second stage
  1221. print(' - Rebuild transforms ...')
  1222. self.train_transform, self.trans_cfg = build_transform(
  1223. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1224. self.train_loader.dataset.transform = self.train_transform
  1225. def check_third_stage(self):
  1226. # set third stage
  1227. print('============== Third stage of Training ==============')
  1228. self.third_stage = True
  1229. # close random affine
  1230. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1231. print(' - Close < translate of affine > ...')
  1232. self.trans_cfg['translate'] = 0.0
  1233. if 'scale' in self.trans_cfg.keys():
  1234. print(' - Close < scale of affine >...')
  1235. self.trans_cfg['scale'] = [1.0, 1.0]
  1236. # build a new transform for second stage
  1237. print(' - Rebuild transforms ...')
  1238. self.train_transform, self.trans_cfg = build_transform(
  1239. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1240. self.train_loader.dataset.transform = self.train_transform
  1241. # Build Trainer
  1242. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1243. if model_cfg['trainer_type'] == 'yolov8':
  1244. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1245. elif model_cfg['trainer_type'] == 'yolox':
  1246. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1247. elif model_cfg['trainer_type'] == 'rtcdet':
  1248. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1249. elif model_cfg['trainer_type'] == 'rtrdet':
  1250. return RTRTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1251. else:
  1252. raise NotImplementedError