coco.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. import os
  2. import random
  3. import numpy as np
  4. import time
  5. import torch
  6. from torch.utils.data import Dataset
  7. import cv2
  8. try:
  9. from pycocotools.coco import COCO
  10. except:
  11. print("It seems that the COCOAPI is not installed.")
  12. try:
  13. from .data_augment.yolov5_augment import yolov5_mosaic_augment, yolov5_mixup_augment, yolox_mixup_augment
  14. except:
  15. from data_augment.yolov5_augment import yolov5_mosaic_augment, yolov5_mixup_augment, yolox_mixup_augment
  16. coco_class_labels = ('background',
  17. 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck',
  18. 'boat', 'traffic light', 'fire hydrant', 'street sign', 'stop sign',
  19. 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
  20. 'elephant', 'bear', 'zebra', 'giraffe', 'hat', 'backpack', 'umbrella',
  21. 'shoe', 'eye glasses', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
  22. 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
  23. 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'plate', 'wine glass',
  24. 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
  25. 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
  26. 'couch', 'potted plant', 'bed', 'mirror', 'dining table', 'window', 'desk',
  27. 'toilet', 'door', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
  28. 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'blender', 'book',
  29. 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
  30. coco_class_index = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
  31. 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
  32. 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67,
  33. 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
  34. class COCODataset(Dataset):
  35. """
  36. COCO dataset class.
  37. """
  38. def __init__(self,
  39. img_size=640,
  40. data_dir=None,
  41. image_set='train2017',
  42. trans_config=None,
  43. transform=None,
  44. is_train=False,
  45. load_cache=False):
  46. """
  47. COCO dataset initialization. Annotation data are read into memory by COCO API.
  48. Args:
  49. data_dir (str): dataset root directory
  50. json_file (str): COCO json file name
  51. name (str): COCO data name (e.g. 'train2017' or 'val2017')
  52. debug (bool): if True, only one data id is selected from the dataset
  53. """
  54. if image_set == 'train2017':
  55. self.json_file='instances_train2017.json'
  56. elif image_set == 'val2017':
  57. self.json_file='instances_val2017.json'
  58. elif image_set == 'test2017':
  59. self.json_file='image_info_test-dev2017.json'
  60. self.img_size = img_size
  61. self.image_set = image_set
  62. self.data_dir = data_dir
  63. self.coco = COCO(os.path.join(self.data_dir, 'annotations', self.json_file))
  64. self.ids = self.coco.getImgIds()
  65. self.class_ids = sorted(self.coco.getCatIds())
  66. self.is_train = is_train
  67. self.load_cache = load_cache
  68. # augmentation
  69. self.transform = transform
  70. self.mosaic_prob = trans_config['mosaic_prob'] if trans_config else 0.0
  71. self.mixup_prob = trans_config['mixup_prob'] if trans_config else 0.0
  72. self.trans_config = trans_config
  73. print('==============================')
  74. print('use Mosaic Augmentation: {}'.format(self.mosaic_prob))
  75. print('use Mixup Augmentation: {}'.format(self.mixup_prob))
  76. print('==============================')
  77. # load cache data
  78. if load_cache:
  79. self._load_cache()
  80. def __len__(self):
  81. return len(self.ids)
  82. def __getitem__(self, index):
  83. return self.pull_item(index)
  84. def _load_cache(self):
  85. # load image cache
  86. self.cached_images = []
  87. self.cached_targets = []
  88. dataset_size = len(self.ids)
  89. print('loading data into memory ...')
  90. for i in range(dataset_size):
  91. if i % 5000 == 0:
  92. print("[{} / {}]".format(i, dataset_size))
  93. # load an image
  94. image, image_id = self.pull_image(i)
  95. orig_h, orig_w, _ = image.shape
  96. # resize image
  97. r = self.img_size / max(orig_h, orig_w)
  98. if r != 1:
  99. interp = cv2.INTER_LINEAR
  100. new_size = (int(orig_w * r), int(orig_h * r))
  101. image = cv2.resize(image, new_size, interpolation=interp)
  102. img_h, img_w = image.shape[:2]
  103. self.cached_images.append(image)
  104. # load target cache
  105. bboxes, labels = self.pull_anno(i)
  106. bboxes[:, [0, 2]] = bboxes[:, [0, 2]] / orig_w * img_w
  107. bboxes[:, [1, 3]] = bboxes[:, [1, 3]] / orig_h * img_h
  108. self.cached_targets.append({"boxes": bboxes, "labels": labels})
  109. def load_image_target(self, index):
  110. if self.load_cache:
  111. # load data from cache
  112. image = self.cached_images[index]
  113. target = self.cached_targets[index]
  114. height, width, channels = image.shape
  115. target["orig_size"] = [height, width]
  116. else:
  117. # load an image
  118. image, _ = self.pull_image(index)
  119. height, width, channels = image.shape
  120. # load a target
  121. bboxes, labels = self.pull_anno(index)
  122. target = {
  123. "boxes": bboxes,
  124. "labels": labels,
  125. "orig_size": [height, width]
  126. }
  127. return image, target
  128. def load_mosaic(self, index):
  129. # load 4x mosaic image
  130. index_list = np.arange(index).tolist() + np.arange(index+1, len(self.ids)).tolist()
  131. id1 = index
  132. id2, id3, id4 = random.sample(index_list, 3)
  133. indexs = [id1, id2, id3, id4]
  134. # load images and targets
  135. image_list = []
  136. target_list = []
  137. for index in indexs:
  138. img_i, target_i = self.load_image_target(index)
  139. image_list.append(img_i)
  140. target_list.append(target_i)
  141. # Mosaic
  142. if self.trans_config['mosaic_type'] == 'yolov5_mosaic':
  143. image, target = yolov5_mosaic_augment(
  144. image_list, target_list, self.img_size, self.trans_config, self.is_train)
  145. return image, target
  146. def load_mixup(self, origin_image, origin_target):
  147. # YOLOv5 type Mixup
  148. if self.trans_config['mixup_type'] == 'yolov5_mixup':
  149. new_index = np.random.randint(0, len(self.ids))
  150. new_image, new_target = self.load_mosaic(new_index)
  151. image, target = yolov5_mixup_augment(
  152. origin_image, origin_target, new_image, new_target)
  153. # YOLOX type Mixup
  154. elif self.trans_config['mixup_type'] == 'yolox_mixup':
  155. new_index = np.random.randint(0, len(self.ids))
  156. new_image, new_target = self.load_image_target(new_index)
  157. image, target = yolox_mixup_augment(
  158. origin_image, origin_target, new_image, new_target, self.img_size, self.trans_config['mixup_scale'])
  159. return image, target
  160. def pull_item(self, index):
  161. if random.random() < self.mosaic_prob:
  162. # load a mosaic image
  163. mosaic = True
  164. image, target = self.load_mosaic(index)
  165. else:
  166. mosaic = False
  167. # load an image and target
  168. image, target = self.load_image_target(index)
  169. # MixUp
  170. if random.random() < self.mixup_prob:
  171. image, target = self.load_mixup(image, target)
  172. # augment
  173. image, target, deltas = self.transform(image, target, mosaic)
  174. return image, target, deltas
  175. def pull_image(self, index):
  176. img_id = self.ids[index]
  177. img_file = os.path.join(self.data_dir, self.image_set,
  178. '{:012}'.format(img_id) + '.jpg')
  179. image = cv2.imread(img_file)
  180. if self.json_file == 'instances_val5k.json' and image is None:
  181. img_file = os.path.join(self.data_dir, 'train2017',
  182. '{:012}'.format(img_id) + '.jpg')
  183. image = cv2.imread(img_file)
  184. assert image is not None
  185. return image, img_id
  186. def pull_anno(self, index):
  187. img_id = self.ids[index]
  188. im_ann = self.coco.loadImgs(img_id)[0]
  189. anno_ids = self.coco.getAnnIds(imgIds=[int(img_id)], iscrowd=False)
  190. annotations = self.coco.loadAnns(anno_ids)
  191. # image infor
  192. width = im_ann['width']
  193. height = im_ann['height']
  194. #load a target
  195. bboxes = []
  196. labels = []
  197. for anno in annotations:
  198. if 'bbox' in anno and anno['area'] > 0:
  199. # bbox
  200. x1 = np.max((0, anno['bbox'][0]))
  201. y1 = np.max((0, anno['bbox'][1]))
  202. x2 = np.min((width - 1, x1 + np.max((0, anno['bbox'][2] - 1))))
  203. y2 = np.min((height - 1, y1 + np.max((0, anno['bbox'][3] - 1))))
  204. if x2 < x1 or y2 < y1:
  205. continue
  206. # class label
  207. cls_id = self.class_ids.index(anno['category_id'])
  208. bboxes.append([x1, y1, x2, y2])
  209. labels.append(cls_id)
  210. # guard against no boxes via resizing
  211. bboxes = np.array(bboxes).reshape(-1, 4)
  212. labels = np.array(labels).reshape(-1)
  213. return bboxes, labels
  214. if __name__ == "__main__":
  215. import argparse
  216. from build import build_transform
  217. parser = argparse.ArgumentParser(description='COCO-Dataset')
  218. # opt
  219. parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/COCO/',
  220. help='data root')
  221. parser.add_argument('-size', '--img_size', default=640, type=int,
  222. help='input image size.')
  223. parser.add_argument('--mosaic', default=None, type=float,
  224. help='mosaic augmentation.')
  225. parser.add_argument('--mixup', default=None, type=float,
  226. help='mixup augmentation.')
  227. parser.add_argument('--is_train', action="store_true", default=False,
  228. help='mixup augmentation.')
  229. parser.add_argument('--load_cache', action="store_true", default=False,
  230. help='load cached data.')
  231. args = parser.parse_args()
  232. trans_config = {
  233. 'aug_type': 'yolov5', # optional: ssd, yolov5
  234. # Basic Augment
  235. 'degrees': 0.0,
  236. 'translate': 0.2,
  237. 'scale': [0.5, 2.0],
  238. 'shear': 0.0,
  239. 'perspective': 0.0,
  240. 'hsv_h': 0.015,
  241. 'hsv_s': 0.7,
  242. 'hsv_v': 0.4,
  243. # Mosaic & Mixup
  244. 'mosaic_prob': 1.0,
  245. 'mixup_prob': 1.0,
  246. 'mosaic_type': 'yolov5_mosaic',
  247. 'mixup_type': 'yolov5_mixup',
  248. 'mixup_scale': [0.5, 1.5]
  249. }
  250. transform, trans_cfg = build_transform(args, trans_config, 32, args.is_train)
  251. dataset = COCODataset(
  252. img_size=args.img_size,
  253. data_dir=args.root,
  254. image_set='val2017',
  255. trans_config=trans_config,
  256. transform=transform,
  257. is_train=args.is_train,
  258. load_cache=args.load_cache
  259. )
  260. np.random.seed(0)
  261. class_colors = [(np.random.randint(255),
  262. np.random.randint(255),
  263. np.random.randint(255)) for _ in range(80)]
  264. print('Data length: ', len(dataset))
  265. for i in range(1000):
  266. image, target, deltas = dataset.pull_item(i)
  267. # to numpy
  268. image = image.permute(1, 2, 0).numpy()
  269. # to uint8
  270. image = image.astype(np.uint8)
  271. image = image.copy()
  272. img_h, img_w = image.shape[:2]
  273. boxes = target["boxes"]
  274. labels = target["labels"]
  275. for box, label in zip(boxes, labels):
  276. x1, y1, x2, y2 = box
  277. cls_id = int(label)
  278. color = class_colors[cls_id]
  279. # class name
  280. label = coco_class_labels[coco_class_index[cls_id]]
  281. image = cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
  282. # put the test on the bbox
  283. cv2.putText(image, label, (int(x1), int(y1 - 5)), 0, 0.5, color, 1, lineType=cv2.LINE_AA)
  284. cv2.imshow('gt', image)
  285. # cv2.imwrite(str(i)+'.jpg', img)
  286. cv2.waitKey(0)