| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- import math
- import torch
- # ------------------------- WarmUp LR Scheduler -------------------------
- ## Warmup LR Scheduler
- class LinearWarmUpScheduler(object):
- def __init__(self, base_lr=0.01, wp_iter=500, warmup_factor=0.00066667):
- self.base_lr = base_lr
- self.wp_iter = wp_iter
- self.warmup_factor = warmup_factor
- def set_lr(self, optimizer, lr, base_lr):
- for param_group in optimizer.param_groups:
- init_lr = param_group['initial_lr']
- ratio = init_lr / base_lr
- param_group['lr'] = lr * ratio
- def __call__(self, iter, optimizer):
- # warmup
- alpha = iter / self.wp_iter
- warmup_factor = self.warmup_factor * (1 - alpha) + alpha
- tmp_lr = self.base_lr * warmup_factor
- self.set_lr(optimizer, tmp_lr, self.base_lr)
-
- ## Build WP LR Scheduler
- def build_wp_lr_scheduler(cfg, base_lr=0.01):
- print('==============================')
- print('WarmUpScheduler: {}'.format(cfg['warmup']))
- print('--base_lr: {}'.format(base_lr))
- print('--warmup_iters: {}'.format(cfg['warmup_iters']))
- print('--warmup_factor: {}'.format(cfg['warmup_factor']))
- if cfg['warmup'] == 'linear':
- wp_lr_scheduler = LinearWarmUpScheduler(base_lr, cfg['warmup_iters'], cfg['warmup_factor'])
-
- return wp_lr_scheduler
-
- # ------------------------- LR Scheduler -------------------------
- def build_lr_scheduler(cfg, optimizer, resume=None):
- print('==============================')
- print('LR Scheduler: {}'.format(cfg['lr_scheduler']))
- if cfg['lr_scheduler'] == 'step':
- assert 'lr_epoch' in cfg
- print('--lr_epoch: {}'.format(cfg['lr_epoch']))
- lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=cfg['lr_epoch'])
- elif cfg['lr_scheduler'] == 'cosine':
- pass
-
- if resume is not None and resume.lower() != "none":
- print('keep training: ', resume)
- checkpoint = torch.load(resume)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("lr_scheduler")
- lr_scheduler.load_state_dict(checkpoint_state_dict)
- return lr_scheduler
- def build_lambda_lr_scheduler(cfg, optimizer, epochs):
- """Build learning rate scheduler from cfg file."""
- print('==============================')
- print('Lr Scheduler: {}'.format(cfg['scheduler']))
- # Cosine LR scheduler
- if cfg['scheduler'] == 'cosine':
- lf = lambda x: ((1 - math.cos(x * math.pi / epochs)) / 2) * (cfg['lrf'] - 1) + 1
- # Linear LR scheduler
- elif cfg['scheduler'] == 'linear':
- lf = lambda x: (1 - x / epochs) * (1.0 - cfg['lrf']) + cfg['lrf']
- else:
- print('unknown lr scheduler.')
- exit(0)
- scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
- return scheduler, lf
|