yolov8_pred.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # Single-level pred layer
  6. class SingleLevelPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int = 256,
  9. reg_dim :int = 256,
  10. stride :int = 32,
  11. reg_max :int = 16,
  12. num_classes :int = 80,
  13. num_coords :int = 4):
  14. super().__init__()
  15. # --------- Basic Parameters ----------
  16. self.stride = stride
  17. self.cls_dim = cls_dim
  18. self.reg_dim = reg_dim
  19. self.reg_max = reg_max
  20. self.num_classes = num_classes
  21. self.num_coords = num_coords
  22. # --------- Network Parameters ----------
  23. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  24. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  25. self.init_bias()
  26. def init_bias(self):
  27. # cls pred bias
  28. b = self.cls_pred.bias.view(1, -1)
  29. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  30. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  31. # reg pred bias
  32. b = self.reg_pred.bias.view(-1, )
  33. b.data.fill_(1.0)
  34. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  35. def generate_anchors(self, fmp_size):
  36. """
  37. fmp_size: (List) [H, W]
  38. """
  39. # generate grid cells
  40. fmp_h, fmp_w = fmp_size
  41. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  42. # [H, W, 2] -> [HW, 2]
  43. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  44. anchors += 0.5 # add center offset
  45. anchors *= self.stride
  46. return anchors
  47. def forward(self, cls_feat, reg_feat):
  48. # pred
  49. cls_pred = self.cls_pred(cls_feat)
  50. reg_pred = self.reg_pred(reg_feat)
  51. # generate anchor boxes: [M, 4]
  52. B, _, H, W = cls_pred.size()
  53. fmp_size = [H, W]
  54. anchors = self.generate_anchors(fmp_size)
  55. anchors = anchors.to(cls_pred.device)
  56. # stride tensor: [M, 1]
  57. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  58. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  59. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  60. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  61. # output dict
  62. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  63. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  64. "anchors": anchors, # List(Tensor) [M, 2]
  65. "strides": self.stride, # List(Int) = [8, 16, 32]
  66. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  67. }
  68. return outputs
  69. # Multi-level pred layer
  70. class MultiLevelPredLayer(nn.Module):
  71. def __init__(self,
  72. cls_dim,
  73. reg_dim,
  74. strides,
  75. num_classes :int = 80,
  76. num_coords :int = 4,
  77. num_levels :int = 3,
  78. reg_max :int = 16):
  79. super().__init__()
  80. # --------- Basic Parameters ----------
  81. self.cls_dim = cls_dim
  82. self.reg_dim = reg_dim
  83. self.strides = strides
  84. self.num_classes = num_classes
  85. self.num_coords = num_coords
  86. self.num_levels = num_levels
  87. self.reg_max = reg_max
  88. # ----------- Network Parameters -----------
  89. ## pred layers
  90. self.multi_level_preds = nn.ModuleList(
  91. [SingleLevelPredLayer(cls_dim = cls_dim,
  92. reg_dim = reg_dim,
  93. stride = strides[level],
  94. reg_max = reg_max,
  95. num_classes = num_classes,
  96. num_coords = num_coords * reg_max)
  97. for level in range(num_levels)
  98. ])
  99. ## proj conv
  100. self.proj_conv = nn.Conv2d(self.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  101. self._reset_parameters()
  102. def _reset_parameters(self):
  103. proj_init = torch.arange(self.reg_max, dtype=torch.float)
  104. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, self.reg_max, 1, 1]), requires_grad=False)
  105. def forward(self, cls_feats, reg_feats):
  106. all_anchors = []
  107. all_strides = []
  108. all_cls_preds = []
  109. all_reg_preds = []
  110. all_box_preds = []
  111. all_delta_preds = []
  112. for level in range(self.num_levels):
  113. # -------------- Single-level prediction --------------
  114. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  115. # -------------- Decode bbox --------------
  116. B, M = outputs["pred_reg"].shape[:2]
  117. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  118. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.reg_max])
  119. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  120. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  121. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  122. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  123. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  124. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  125. ## tlbr -> xyxy
  126. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.strides[level]
  127. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.strides[level]
  128. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  129. # collect results
  130. all_cls_preds.append(outputs["pred_cls"])
  131. all_reg_preds.append(outputs["pred_reg"])
  132. all_box_preds.append(box_pred)
  133. all_delta_preds.append(delta_pred)
  134. all_anchors.append(outputs["anchors"])
  135. all_strides.append(outputs["stride_tensor"])
  136. # output dict
  137. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  138. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  139. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  140. "pred_delta": all_delta_preds, # List(Tensor) [B, M, 4]
  141. "anchors": all_anchors, # List(Tensor) [M, 2]
  142. "strides": self.strides, # List(Int) = [8, 16, 32]
  143. "stride_tensor": all_strides # List(Tensor) [M, 1]
  144. }
  145. return outputs
  146. # build detection head
  147. def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3, reg_max=16):
  148. pred_layers = MultiLevelPredLayer(cls_dim, reg_dim, strides, num_classes, num_coords, num_levels, reg_max)
  149. return pred_layers