| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- import math
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- # Single-level pred layer
- class SingleLevelPredLayer(nn.Module):
- def __init__(self,
- cls_dim :int = 256,
- reg_dim :int = 256,
- stride :int = 32,
- reg_max :int = 16,
- num_classes :int = 80,
- num_coords :int = 4):
- super().__init__()
- # --------- Basic Parameters ----------
- self.stride = stride
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.reg_max = reg_max
- self.num_classes = num_classes
- self.num_coords = num_coords
- # --------- Network Parameters ----------
- self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
- self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
- self.init_bias()
-
- def init_bias(self):
- # cls pred bias
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred bias
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- anchors += 0.5 # add center offset
- anchors *= self.stride
- return anchors
-
- def forward(self, cls_feat, reg_feat):
- # pred
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # generate anchor boxes: [M, 4]
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- anchors = self.generate_anchors(fmp_size)
- anchors = anchors.to(cls_pred.device)
- # stride tensor: [M, 1]
- stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
-
- # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
-
- # output dict
- outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
- "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
- "anchors": anchors, # List(Tensor) [M, 2]
- "strides": self.stride, # List(Int) = [8, 16, 32]
- "stride_tensor": stride_tensor # List(Tensor) [M, 1]
- }
- return outputs
- # Multi-level pred layer
- class MultiLevelPredLayer(nn.Module):
- def __init__(self,
- cls_dim,
- reg_dim,
- strides,
- num_classes :int = 80,
- num_coords :int = 4,
- num_levels :int = 3,
- reg_max :int = 16):
- super().__init__()
- # --------- Basic Parameters ----------
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.strides = strides
- self.num_classes = num_classes
- self.num_coords = num_coords
- self.num_levels = num_levels
- self.reg_max = reg_max
- # ----------- Network Parameters -----------
- ## pred layers
- self.multi_level_preds = nn.ModuleList(
- [SingleLevelPredLayer(cls_dim = cls_dim,
- reg_dim = reg_dim,
- stride = strides[level],
- reg_max = reg_max,
- num_classes = num_classes,
- num_coords = num_coords * reg_max)
- for level in range(num_levels)
- ])
- ## proj conv
- self.proj_conv = nn.Conv2d(self.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
- self._reset_parameters()
- def _reset_parameters(self):
- proj_init = torch.arange(self.reg_max, dtype=torch.float)
- self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, self.reg_max, 1, 1]), requires_grad=False)
- def forward(self, cls_feats, reg_feats):
- all_anchors = []
- all_strides = []
- all_cls_preds = []
- all_reg_preds = []
- all_box_preds = []
- all_delta_preds = []
- for level in range(self.num_levels):
- # -------------- Single-level prediction --------------
- outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
- # -------------- Decode bbox --------------
- B, M = outputs["pred_reg"].shape[:2]
- # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
- delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.reg_max])
- # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
- delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
- # [B, reg_max, 4, M] -> [B, 1, 4, M]
- delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
- # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
- delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
- ## tlbr -> xyxy
- x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.strides[level]
- x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.strides[level]
- box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
- # collect results
- all_cls_preds.append(outputs["pred_cls"])
- all_reg_preds.append(outputs["pred_reg"])
- all_box_preds.append(box_pred)
- all_delta_preds.append(delta_pred)
- all_anchors.append(outputs["anchors"])
- all_strides.append(outputs["stride_tensor"])
-
- # output dict
- outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
- "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
- "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
- "pred_delta": all_delta_preds, # List(Tensor) [B, M, 4]
- "anchors": all_anchors, # List(Tensor) [M, 2]
- "strides": self.strides, # List(Int) = [8, 16, 32]
- "stride_tensor": all_strides # List(Tensor) [M, 1]
- }
- return outputs
-
- # build detection head
- def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3, reg_max=16):
- pred_layers = MultiLevelPredLayer(cls_dim, reg_dim, strides, num_classes, num_coords, num_levels, reg_max)
- return pred_layers
|