| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- try:
- from .yolov8_basic import Conv, Yolov8StageBlock
- except:
- from yolov8_basic import Conv, Yolov8StageBlock
- # PaFPN-ELAN
- class Yolov8PaFPN(nn.Module):
- def __init__(self,
- in_dims = [256, 512, 512],
- width = 1.0,
- depth = 1.0,
- ratio = 1.0,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False):
- super(Yolov8PaFPN, self).__init__()
- print('==============================')
- print('FPN: {}'.format("Yolov8 PaFPN"))
- # ---------------- Basic parameters ----------------
- self.in_dims = in_dims
- self.width = width
- self.depth = depth
- self.out_dim = [round(256 * width), round(512 * width), round(512 * width * ratio)]
- c3, c4, c5 = in_dims
- # ---------------- Top dwon ----------------
- ## P5 -> P4
- self.top_down_layer_1 = Yolov8StageBlock(in_dim = c5 + c4,
- out_dim = round(512*width),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- ## P4 -> P3
- self.top_down_layer_2 = Yolov8StageBlock(in_dim = round(512*width) + c3,
- out_dim = round(256*width),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- # ---------------- Bottom up ----------------
- ## P3 -> P4
- self.dowmsample_layer_1 = Conv(round(256*width), round(256*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.bottom_up_layer_1 = Yolov8StageBlock(in_dim = round(256*width) + round(512*width),
- out_dim = round(512*width),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- ## P4 -> P5
- self.dowmsample_layer_2 = Conv(round(512*width), round(512*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.bottom_up_layer_2 = Yolov8StageBlock(in_dim = round(512 * width) + c5,
- out_dim = round(512 * width * ratio),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, features):
- c3, c4, c5 = features
- # Top down
- ## P5 -> P4
- c6 = F.interpolate(c5, scale_factor=2.0)
- c7 = torch.cat([c6, c4], dim=1)
- c8 = self.top_down_layer_1(c7)
- ## P4 -> P3
- c9 = F.interpolate(c8, scale_factor=2.0)
- c10 = torch.cat([c9, c3], dim=1)
- c11 = self.top_down_layer_2(c10)
- # Bottom up
- # p3 -> P4
- c12 = self.dowmsample_layer_1(c11)
- c13 = torch.cat([c12, c8], dim=1)
- c14 = self.bottom_up_layer_1(c13)
- # P4 -> P5
- c15 = self.dowmsample_layer_2(c14)
- c16 = torch.cat([c15, c5], dim=1)
- c17 = self.bottom_up_layer_2(c16)
- out_feats = [c11, c14, c17] # [P3, P4, P5]
-
- return out_feats
- def build_fpn(cfg, in_dims):
- model = cfg['fpn']
- # build neck
- if model == 'yolov8_pafpn':
- fpn_net = Yolov8PaFPN(in_dims=in_dims,
- width=cfg['width'],
- depth=cfg['depth'],
- ratio=cfg['ratio'],
- act_type=cfg['fpn_act'],
- norm_type=cfg['fpn_norm'],
- depthwise=cfg['fpn_depthwise']
- )
- return fpn_net
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'fpn': 'yolov8_pafpn',
- 'fpn_act': 'silu',
- 'fpn_norm': 'BN',
- 'fpn_depthwise': False,
- 'width': 0.25,
- 'depth': 0.34,
- 'ratio': 2.0,
- }
- model = build_fpn(cfg, in_dims=[64, 128, 256])
- pyramid_feats = [torch.randn(1, 64, 80, 80), torch.randn(1, 128, 40, 40), torch.randn(1, 256, 20, 20)]
- t0 = time.time()
- outputs = model(pyramid_feats)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|