README.md 3.1 KB

YOLOv8:

  • For training, we train YOLOv8 series with 500 epochs on COCO.
  • For data augmentation, we use the random affine, hsv augmentation, mosaic augmentation and mixup augmentation, following the setting of YOLOv8.
  • For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64, which is different from the official YOLOv8. We have tried SGD, but it has weakened performance. For example, when using SGD, YOLOv8-N's AP was only 35.8%, lower than the current result (36.8 %), perhaps because some hyperparameters were not set properly.
  • For learning rate scheduler, we use linear decay scheduler.

Train YOLOv8

Single GPU

Taking training YOLOv8-S on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov8_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 500 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale 

Multi GPU

Taking training YOLOv8 on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov8_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 500  --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ 

Test YOLOv8

Taking testing YOLOv8 on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolov8.pth -size 640 -vt 0.4 --show 

Evaluate YOLOv8

Taking evaluating YOLOv8 on COCO-val as the example,

python eval.py --cuda -d coco-val --root path/to/coco -m yolov8_s --weight path/to/yolov8.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov8_s --weight path/to/weight -size 640 -vt 0.4 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov8_s --weight path/to/weight -size 640 -vt 0.4 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov8_s --weight path/to/weight -size 640 -vt 0.4 --show --gif
Model Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
YOLOv8-N 8xb16 640 37.0 52.9 8.8 3.2 ckpt
YOLOv8-S 8xb16 640 43.5 60.4 28.8 11.2 ckpt
YOLOv8-M 8xb16 640
YOLOv8-L 8xb16 640 50.7 68.3 165.7 43.7 ckpt