| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505 |
- import torch
- import torch.distributed as dist
- import time
- import os
- import numpy as np
- import random
- # ----------------- Extra Components -----------------
- from utils import distributed_utils
- from utils.misc import ModelEMA, CollateFunc, build_dataloader
- from utils.misc import MetricLogger, SmoothedValue
- from utils.vis_tools import vis_data
- # ----------------- Evaluator Components -----------------
- from evaluator.build import build_evluator
- # ----------------- Optimizer & LrScheduler Components -----------------
- from utils.solver.optimizer import build_yolo_optimizer, build_rtdetr_optimizer
- from utils.solver.lr_scheduler import build_lambda_lr_scheduler
- from utils.solver.lr_scheduler import build_wp_lr_scheduler, build_lr_scheduler
- # ----------------- Dataset Components -----------------
- from dataset.build import build_dataset, build_transform
- # ----------------------- Det trainers -----------------------
- ## YOLOv8 Trainer
- class Yolov8Trainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.heavy_eval = False
- self.last_opt_step = 0
- self.clip_grad = 10
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- accumulate = max(1, round(64 / self.args.batch_size))
- print('Grad Accumulate: {}'.format(accumulate))
- self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- accumulate = accumulate = max(1, round(64 / self.args.batch_size))
- # train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # to device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- losses *= images.shape[0] # loss * bs
- # reduce
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # gradient averaged between devices in DDP mode
- losses *= distributed_utils.get_world_size()
- # backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni - self.last_opt_step >= accumulate:
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- self.last_opt_step = ni
- # display
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
-
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- self.lr_scheduler.step()
-
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- ## YOLOX Trainer
- class YoloxTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.no_aug_epoch = args.no_aug_epoch
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
-
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale and ni % 10 == 0:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accu
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- loss_val = loss_dict_reduced[k]
- if k == 'losses':
- loss_val *= self.grad_accumulate
- log += '[{}: {:.2f}]'.format(k, loss_val)
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
-
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- ## Real-time Convolutional Object Detector Trainer
- class RTCTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
- metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
- epoch_size = len(self.train_loader)
- print_freq = 10
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accumulate
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- grad_norm = None
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Update log
- metric_logger.update(**loss_dict_reduced)
- metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
- metric_logger.update(grad_norm=grad_norm)
- metric_logger.update(size=img_size)
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
- # Gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
- ## Real-time DETR Trainer
- class RTDetrTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- Basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 0.1
- self.heavy_eval = False
- self.normalize_bbox = True
- # close AMP for RT-DETR
- self.args.fp16 = False
- # weak augmentatino stage
- self.second_stage = False
- self.second_stage_epoch = -1
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.0001, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
- self.warmup_dict = {'warmup': 'linear', 'warmup_iters': 2000, 'warmup_factor': 0.00066667}
- self.lr_schedule_dict = {'lr_scheduler': 'step', 'lr_epoch': [self.args.max_epoch // 12 * 11]}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- if self.trans_cfg["mosaic_prob"] > 0:
- self.second_stage_epoch = 5
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
- self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.wp_lr_scheduler = build_wp_lr_scheduler(self.warmup_dict, self.optimizer_dict['lr0'])
- self.lr_scheduler = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.resume)
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
- metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
- epoch_size = len(self.train_loader)
- print_freq = 10
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- nw = self.warmup_dict['warmup_iters']
- lr_warmup_stage = True
- # Train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
- ni = iter_i + self.epoch * epoch_size
- # WarmUp
- if ni < nw and lr_warmup_stage:
- self.wp_lr_scheduler(ni, self.optimizer)
- elif ni == nw and lr_warmup_stage:
- print('Warmup stage is over.')
- lr_warmup_stage = False
- self.wp_lr_scheduler.set_lr(self.optimizer, self.optimizer_dict['lr0'], self.optimizer_dict['lr0'])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- for tgt in targets:
- tgt['boxes'] = tgt['boxes'].to(self.device)
- tgt['labels'] = tgt['labels'].to(self.device)
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(img_size, targets, self.args.min_box_size)
- # xyxy -> cxcywh
- targets = self.box_xyxy_to_cxcywh(targets)
-
- # Visualize train targets
- if self.args.vis_tgt:
- targets = self.box_cxcywh_to_xyxy(targets)
- vis_data(images, targets, normalized_bbox=self.normalize_bbox,
- pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
- targets = self.box_xyxy_to_cxcywh(targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images, targets)
- loss_dict = self.criterion(outputs, targets)
- losses = sum(loss_dict.values())
- # Grad Accumulate
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- grad_norm = None
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Update log
- metric_logger.update(loss=losses.item(), **loss_dict_reduced)
- metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
- metric_logger.update(grad_norm=grad_norm)
- metric_logger.update(size=img_size)
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
-
- # LR Scheduler
- self.lr_scheduler.step()
-
- def refine_targets(self, img_size, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- if self.normalize_bbox:
- # normalize box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- if self.normalize_bbox:
- # normalize box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def box_xyxy_to_cxcywh(self, targets):
- # rescale targets
- for tgt in targets:
- boxes_xyxy = tgt["boxes"].clone()
- # rescale box
- cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
- bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
- boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
- tgt["boxes"] = boxes_bwbh
- return targets
- def box_cxcywh_to_xyxy(self, targets):
- # rescale targets
- for tgt in targets:
- boxes_cxcywh = tgt["boxes"].clone()
- # rescale box
- x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
- x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
- boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
- tgt["boxes"] = boxes_bwbh
- return targets
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-
- self.train_loader.dataset.transform = self.train_transform
- # Build Trainer
- def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ----------------------- Det trainers -----------------------
- if model_cfg['trainer_type'] == 'yolov8':
- return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'yolox':
- return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'rtcdet':
- return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'rtdetr':
- return RTDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- else:
- raise NotImplementedError(model_cfg['trainer_type'])
-
|