| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .matcher import TaskAlignedAssigner, Yolov5Matcher
- from utils.box_ops import bbox_iou, get_ious
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- class Criterion(object):
- def __init__(self,
- cfg,
- device,
- num_classes=80,
- warmup_epoch=1):
- # ------------------ Basic Parameters ------------------
- self.cfg = cfg
- self.device = device
- self.num_classes = num_classes
- self.warmup_epoch = warmup_epoch
- # ------------------ Loss Parameters ------------------
- ## loss function
- self.cls_lossf = ClassificationLoss(cfg, reduction='none')
- self.reg_lossf = RegressionLoss(num_classes)
- ## loss coeff
- self.loss_cls_weight = cfg['loss_cls_weight']
- self.loss_iou_weight = cfg['loss_iou_weight']
- # ------------------ Label Assigner ------------------
- matcher_config = cfg['matcher']
- ## matcher-1
- self.fixed_matcher = Yolov5Matcher(
- num_classes=num_classes,
- num_anchors=3,
- anchor_size=cfg['anchor_size'],
- anchor_theshold=matcher_config['anchor_thresh']
- )
- ## matcher-2
- self.dynamic_matcher = TaskAlignedAssigner(
- topk=matcher_config['topk'],
- num_classes=num_classes,
- alpha=matcher_config['alpha'],
- beta=matcher_config['beta']
- )
- def fixed_assignment_loss(self, outputs, targets):
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- fmp_sizes = outputs['fmp_sizes']
- (
- gt_objectness,
- gt_classes,
- gt_bboxes,
- ) = self.fixed_matcher(fmp_sizes=fmp_sizes,
- fpn_strides=fpn_strides,
- targets=targets)
- # List[B, M, C] -> [B, M, C] -> [BM, C]
- pred_cls = torch.cat(outputs['pred_cls'], dim=1).view(-1, self.num_classes) # [BM, C]
- pred_box = torch.cat(outputs['pred_box'], dim=1).view(-1, 4) # [BM, 4]
-
- gt_objectness = gt_objectness.view(-1).to(device).float() # [BM,]
- gt_classes = gt_classes.view(-1, self.num_classes).to(device).float() # [BM, C]
- gt_bboxes = gt_bboxes.view(-1, 4).to(device).float() # [BM, 4]
- pos_masks = (gt_objectness > 0)
- num_fgs = pos_masks.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0)
- # box loss
- ious = get_ious(pred_box[pos_masks],
- gt_bboxes[pos_masks],
- box_mode="xyxy",
- iou_type='giou')
- loss_box = 1.0 - ious
- loss_box = loss_box.sum() / num_fgs
-
- # cls loss
- gt_classes[pos_masks] = gt_classes[pos_masks] * ious.unsqueeze(-1).clamp(0.)
- loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_classes, reduction='none')
- loss_cls = loss_cls.sum() / num_fgs
- # total loss
- losses = self.loss_cls_weight * loss_cls + \
- self.loss_iou_weight * loss_box
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- losses = losses
- )
- return loss_dict
- def dynamic_assignment_loss(self, outputs, targets):
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- anchors = outputs['anchors']
- anchors = torch.cat(anchors, dim=0)
- num_anchors = anchors.shape[0]
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
-
- # label assignment
- gt_score_targets = []
- gt_bbox_targets = []
- fg_masks = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
- tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
- # check target
- if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
- # There is no valid gt
- fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
- gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
- gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
- else:
- tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
- tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
- (
- _,
- gt_box, #[1, M, 4]
- gt_score, #[1, M, C]
- fg_mask, #[1, M,]
- _
- ) = self.dynamic_matcher(
- pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
- pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
- anc_points = anchors[..., :2],
- gt_labels = tgt_labels,
- gt_bboxes = tgt_boxs
- )
- gt_score_targets.append(gt_score)
- gt_bbox_targets.append(gt_box)
- fg_masks.append(fg_mask)
- # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
- fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
- gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
- gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
-
- # cls loss
- cls_preds = cls_preds.view(-1, self.num_classes)
- loss_cls = self.cls_lossf(cls_preds, gt_score_targets)
- # reg loss
- bbox_weight = gt_score_targets[fg_masks].sum(-1, keepdim=True) # [BM, 1]
- box_preds = box_preds.view(-1, 4) # [BM, 4]
- loss_iou = self.reg_lossf(
- pred_boxs = box_preds,
- gt_boxs = gt_bbox_targets,
- bbox_weight = bbox_weight,
- fg_masks = fg_masks
- )
- num_fgs = gt_score_targets.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0)
- # normalize loss
- loss_cls = loss_cls.sum() / num_fgs
- loss_iou = loss_iou.sum() / num_fgs
- # total loss
- losses = loss_cls * self.loss_cls_weight + \
- loss_iou * self.loss_iou_weight
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_iou = loss_iou,
- losses = losses
- )
- return loss_dict
- def __call__(self, outputs, targets, epoch=0):
- """
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_regs']: List(Tensor) [B, M, 4*(reg_max+1)]
- outputs['pred_boxs']: List(Tensor) [B, M, 4]
- outputs['anchors']: List(Tensor) [M, 2]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- outputs['stride_tensor']: List(Tensor) [M, 1]
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- # Fixed LA stage
- if epoch < self.warmup_epoch:
- return self.fixed_assignment_loss(outputs, targets)
- # Switch to Dynamic LA stage
- elif epoch == self.warmup_epoch:
- print('Switch to Dynamic Label Assignment.')
- return self.dynamic_assignment_loss(outputs, targets)
- # Dynamic LA stage
- else:
- return self.dynamic_assignment_loss(outputs, targets)
-
- class ClassificationLoss(nn.Module):
- def __init__(self, cfg, reduction='none'):
- super(ClassificationLoss, self).__init__()
- self.cfg = cfg
- self.reduction = reduction
- def binary_cross_entropy(self, pred_logits, gt_score):
- loss = F.binary_cross_entropy_with_logits(
- pred_logits.float(), gt_score.float(), reduction='none')
- if self.reduction == 'sum':
- loss = loss.sum()
- elif self.reduction == 'mean':
- loss = loss.mean()
- return loss
- def forward(self, pred_logits, gt_score):
- if self.cfg['cls_loss'] == 'bce':
- return self.binary_cross_entropy(pred_logits, gt_score)
- class RegressionLoss(nn.Module):
- def __init__(self, num_classes):
- super(RegressionLoss, self).__init__()
- self.num_classes = num_classes
- def forward(self, pred_boxs, gt_boxs, bbox_weight, fg_masks):
- """
- Input:
- pred_boxs: (Tensor) [BM, 4]
- anchors: (Tensor) [BM, 2]
- gt_boxs: (Tensor) [BM, 4]
- bbox_weight: (Tensor) [BM, 1]
- fg_masks: (Tensor) [BM,]
- strides: (Tensor) [BM, 1]
- """
- # select positive samples mask
- num_pos = fg_masks.sum()
- if num_pos > 0:
- pred_boxs_pos = pred_boxs[fg_masks]
- gt_boxs_pos = gt_boxs[fg_masks]
- # iou loss
- ious = bbox_iou(pred_boxs_pos,
- gt_boxs_pos,
- xywh=False,
- CIoU=True)
- loss_iou = (1.0 - ious) * bbox_weight
-
- else:
- loss_iou = pred_boxs.sum() * 0.
- return loss_iou
- def build_criterion(cfg, device, num_classes, warmup_epoch=1):
- criterion = Criterion(
- cfg=cfg,
- device=device,
- num_classes=num_classes,
- warmup_epoch=warmup_epoch,
- )
- return criterion
- if __name__ == "__main__":
- pass
|