yolov7.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. import torch
  2. import torch.nn as nn
  3. from utils.nms import multiclass_nms
  4. from .yolov7_backbone import build_backbone
  5. from .yolov7_neck import build_neck
  6. from .yolov7_fpn import build_fpn
  7. from .yolov7_head import build_head
  8. # YOLOv7
  9. class YOLOv7(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False):
  18. super(YOLOv7, self).__init__()
  19. # ------------------- Basic parameters -------------------
  20. self.cfg = cfg # 模型配置文件
  21. self.device = device # cuda或者是cpu
  22. self.num_classes = num_classes # 类别的数量
  23. self.trainable = trainable # 训练的标记
  24. self.conf_thresh = conf_thresh # 得分阈值
  25. self.nms_thresh = nms_thresh # NMS阈值
  26. self.topk = topk # topk
  27. self.stride = [8, 16, 32] # 网络的输出步长
  28. # ------------------- Network Structure -------------------
  29. ## 主干网络
  30. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  31. ## 颈部网络: SPP模块
  32. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1]//2)
  33. feats_dim[-1] = self.neck.out_dim
  34. ## 颈部网络: 特征金字塔
  35. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  36. self.head_dim = self.fpn.out_dim
  37. ## 检测头
  38. self.non_shared_heads = nn.ModuleList(
  39. [build_head(cfg, head_dim, head_dim, num_classes)
  40. for head_dim in self.head_dim
  41. ])
  42. ## 预测层
  43. self.obj_preds = nn.ModuleList(
  44. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  45. for head in self.non_shared_heads
  46. ])
  47. self.cls_preds = nn.ModuleList(
  48. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  49. for head in self.non_shared_heads
  50. ])
  51. self.reg_preds = nn.ModuleList(
  52. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  53. for head in self.non_shared_heads
  54. ])
  55. # --------- Network Initialization ----------
  56. # init bias
  57. self.init_yolo()
  58. def init_yolo(self):
  59. # Init yolo
  60. for m in self.modules():
  61. if isinstance(m, nn.BatchNorm2d):
  62. m.eps = 1e-3
  63. m.momentum = 0.03
  64. # Init bias
  65. init_prob = 0.01
  66. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  67. # obj pred
  68. for obj_pred in self.obj_preds:
  69. b = obj_pred.bias.view(1, -1)
  70. b.data.fill_(bias_value.item())
  71. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  72. # cls pred
  73. for cls_pred in self.cls_preds:
  74. b = cls_pred.bias.view(1, -1)
  75. b.data.fill_(bias_value.item())
  76. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  77. # reg pred
  78. for reg_pred in self.reg_preds:
  79. b = reg_pred.bias.view(-1, )
  80. b.data.fill_(1.0)
  81. reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  82. w = reg_pred.weight
  83. w.data.fill_(0.)
  84. reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  85. def generate_anchors(self, level, fmp_size):
  86. """
  87. fmp_size: (List) [H, W]
  88. """
  89. # generate grid cells
  90. fmp_h, fmp_w = fmp_size
  91. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  92. # [H, W, 2] -> [HW, 2]
  93. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  94. anchor_xy += 0.5 # add center offset
  95. anchor_xy *= self.stride[level]
  96. anchors = anchor_xy.to(self.device)
  97. return anchors
  98. def decode_boxes(self, anchors, reg_pred, stride):
  99. """
  100. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  101. reg_pred: (List[Tensor]) [B, M, 4] or [M, 4]
  102. """
  103. # center of bbox
  104. pred_ctr_xy = anchors + reg_pred[..., :2] * stride
  105. # size of bbox
  106. pred_box_wh = reg_pred[..., 2:].exp() * stride
  107. pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
  108. pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
  109. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  110. return pred_box
  111. def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
  112. """
  113. Input:
  114. obj_preds: List(Tensor) [[H x W, 1], ...]
  115. cls_preds: List(Tensor) [[H x W, C], ...]
  116. reg_preds: List(Tensor) [[H x W, 4], ...]
  117. anchors: List(Tensor) [[H x W, 2], ...]
  118. """
  119. all_scores = []
  120. all_labels = []
  121. all_bboxes = []
  122. for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchors_i) in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
  123. # (H x W x C,)
  124. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  125. # Keep top k top scoring indices only.
  126. num_topk = min(self.topk, reg_pred_i.size(0))
  127. # torch.sort is actually faster than .topk (at least on GPUs)
  128. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  129. topk_scores = predicted_prob[:num_topk]
  130. topk_idxs = topk_idxs[:num_topk]
  131. # filter out the proposals with low confidence score
  132. keep_idxs = topk_scores > self.conf_thresh
  133. scores = topk_scores[keep_idxs]
  134. topk_idxs = topk_idxs[keep_idxs]
  135. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  136. labels = topk_idxs % self.num_classes
  137. reg_pred_i = reg_pred_i[anchor_idxs]
  138. anchors_i = anchors_i[anchor_idxs]
  139. # decode box: [M, 4]
  140. bboxes = self.decode_boxes(anchors_i, reg_pred_i, self.stride[level])
  141. all_scores.append(scores)
  142. all_labels.append(labels)
  143. all_bboxes.append(bboxes)
  144. scores = torch.cat(all_scores)
  145. labels = torch.cat(all_labels)
  146. bboxes = torch.cat(all_bboxes)
  147. # to cpu & numpy
  148. scores = scores.cpu().numpy()
  149. labels = labels.cpu().numpy()
  150. bboxes = bboxes.cpu().numpy()
  151. # nms
  152. scores, labels, bboxes = multiclass_nms(
  153. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  154. return bboxes, scores, labels
  155. @torch.no_grad()
  156. def inference_single_image(self, x):
  157. # 主干网络
  158. pyramid_feats = self.backbone(x)
  159. # 颈部网络
  160. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  161. # 特征金字塔
  162. pyramid_feats = self.fpn(pyramid_feats)
  163. # 检测头
  164. all_obj_preds = []
  165. all_cls_preds = []
  166. all_reg_preds = []
  167. all_anchors = []
  168. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  169. cls_feat, reg_feat = head(feat)
  170. # [1, C, H, W]
  171. obj_pred = self.obj_preds[level](reg_feat)
  172. cls_pred = self.cls_preds[level](cls_feat)
  173. reg_pred = self.reg_preds[level](reg_feat)
  174. # anchors: [M, 2]
  175. fmp_size = cls_pred.shape[-2:]
  176. anchors = self.generate_anchors(level, fmp_size)
  177. # [1, C, H, W] -> [H, W, C] -> [M, C]
  178. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  179. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  180. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  181. all_obj_preds.append(obj_pred)
  182. all_cls_preds.append(cls_pred)
  183. all_reg_preds.append(reg_pred)
  184. all_anchors.append(anchors)
  185. # post process
  186. bboxes, scores, labels = self.post_process(
  187. all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
  188. return bboxes, scores, labels
  189. def forward(self, x):
  190. if not self.trainable:
  191. return self.inference_single_image(x)
  192. else:
  193. # 主干网络
  194. pyramid_feats = self.backbone(x)
  195. # 颈部网络
  196. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  197. # 特征金字塔
  198. pyramid_feats = self.fpn(pyramid_feats)
  199. # 检测头
  200. all_anchors = []
  201. all_obj_preds = []
  202. all_cls_preds = []
  203. all_box_preds = []
  204. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  205. cls_feat, reg_feat = head(feat)
  206. # [B, C, H, W]
  207. obj_pred = self.obj_preds[level](reg_feat)
  208. cls_pred = self.cls_preds[level](cls_feat)
  209. reg_pred = self.reg_preds[level](reg_feat)
  210. B, _, H, W = cls_pred.size()
  211. fmp_size = [H, W]
  212. # generate anchor boxes: [M, 4]
  213. anchors = self.generate_anchors(level, fmp_size)
  214. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  215. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  216. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  217. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  218. # decode box: [M, 4]
  219. box_pred = self.decode_boxes(anchors, reg_pred, self.stride[level])
  220. all_obj_preds.append(obj_pred)
  221. all_cls_preds.append(cls_pred)
  222. all_box_preds.append(box_pred)
  223. all_anchors.append(anchors)
  224. # output dict
  225. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  226. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  227. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  228. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  229. 'strides': self.stride} # List(Int) [8, 16, 32]
  230. return outputs