vitdet_head.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. def build_predictor(cfg, strides, num_classes, num_coords=4, num_levels=3):
  6. if cfg['task'] == 'detection':
  7. pred_layer = MultiDetPredLayer(cls_dim = cfg['hidden_dim'],
  8. reg_dim = cfg['hidden_dim'],
  9. strides = strides,
  10. num_classes = num_classes,
  11. num_coords = num_coords,
  12. num_levels = num_levels
  13. )
  14. elif cfg['task'] == 'segmentation':
  15. raise NotImplementedError
  16. elif cfg['task'] == 'pose_estimation':
  17. raise NotImplementedError
  18. return pred_layer
  19. # ---------------------------- Detection predictor ----------------------------
  20. ## Single-level Detection Prediction Layer
  21. class SingleDetPDLayer(nn.Module):
  22. def __init__(self,
  23. cls_dim :int = 256,
  24. reg_dim :int = 256,
  25. stride :int = 32,
  26. num_classes :int = 80,
  27. num_coords :int = 4):
  28. super().__init__()
  29. # --------- Basic Parameters ----------
  30. self.stride = stride
  31. self.cls_dim = cls_dim
  32. self.reg_dim = reg_dim
  33. self.num_classes = num_classes
  34. self.num_coords = num_coords
  35. # --------- Network Parameters ----------
  36. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  37. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  38. self.init_bias()
  39. def init_bias(self):
  40. # cls pred bias
  41. b = self.cls_pred.bias.view(1, -1)
  42. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  43. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  44. # reg pred bias
  45. b = self.reg_pred.bias.view(-1, )
  46. b.data.fill_(1.0)
  47. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  48. def generate_anchors(self, fmp_size):
  49. """
  50. fmp_size: (List) [H, W]
  51. """
  52. # generate grid cells
  53. fmp_h, fmp_w = fmp_size
  54. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  55. # [H, W, 2] -> [HW, 2]
  56. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  57. anchors += 0.5 # add center offset
  58. anchors *= self.stride
  59. return anchors
  60. def forward(self, cls_feat, reg_feat):
  61. # pred
  62. cls_pred = self.cls_pred(cls_feat)
  63. reg_pred = self.reg_pred(reg_feat)
  64. # generate anchor boxes: [M, 4]
  65. B, _, H, W = cls_pred.size()
  66. fmp_size = [H, W]
  67. anchors = self.generate_anchors(fmp_size)
  68. anchors = anchors.to(cls_pred.device)
  69. # stride tensor: [M, 1]
  70. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  71. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  72. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  73. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  74. # ---------------- Decode bbox ----------------
  75. ctr_pred = reg_pred[..., :2] * self.stride + anchors[..., :2]
  76. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  77. pred_x1y1 = ctr_pred - wh_pred * 0.5
  78. pred_x2y2 = ctr_pred + wh_pred * 0.5
  79. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  80. # output dict
  81. outputs = {"pred_cls": cls_pred, # (Tensor) [B, M, C]
  82. "pred_reg": reg_pred, # (Tensor) [B, M, 4]
  83. "pred_box": box_pred, # (Tensor) [B, M, 4]
  84. "anchors": anchors, # (Tensor) [M, 2]
  85. "stride": self.stride, # (Int)
  86. "stride_tensors": stride_tensor # List(Tensor) [M, 1]
  87. }
  88. return outputs
  89. # Multi-level pred layer
  90. class MultiDetPredLayer(nn.Module):
  91. def __init__(self,
  92. cls_dim,
  93. reg_dim,
  94. strides,
  95. num_classes :int = 80,
  96. num_coords :int = 4,
  97. num_levels :int = 3):
  98. super().__init__()
  99. # --------- Basic Parameters ----------
  100. self.cls_dim = cls_dim
  101. self.reg_dim = reg_dim
  102. self.strides = strides
  103. self.num_classes = num_classes
  104. self.num_coords = num_coords
  105. self.num_levels = num_levels
  106. # ----------- Network Parameters -----------
  107. ## multi-level pred layers
  108. self.multi_level_preds = nn.ModuleList(
  109. [SingleDetPDLayer(cls_dim = cls_dim,
  110. reg_dim = reg_dim,
  111. stride = strides[level],
  112. num_classes = num_classes,
  113. num_coords = num_coords)
  114. for level in range(num_levels)
  115. ])
  116. def forward(self, cls_feats, reg_feats):
  117. all_anchors = []
  118. all_strides = []
  119. all_cls_preds = []
  120. all_box_preds = []
  121. all_reg_preds = []
  122. for level in range(self.num_levels):
  123. # ---------------- Single level prediction ----------------
  124. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  125. # collect results
  126. all_cls_preds.append(outputs["pred_cls"])
  127. all_box_preds.append(outputs["pred_box"])
  128. all_reg_preds.append(outputs["pred_reg"])
  129. all_anchors.append(outputs["anchors"])
  130. all_strides.append(outputs["stride_tensors"])
  131. # output dict
  132. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  133. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  134. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  135. "anchors": all_anchors, # List(Tensor) [M, 2]
  136. "strides": self.strides, # List(Int) [8, 16, 32]
  137. "stride_tensors": all_strides # List(Tensor) [M, 1]
  138. }
  139. return outputs
  140. # -------------------- Segmentation predictor --------------------
  141. class MaskPDLayer(nn.Module):
  142. def __init__(self, *args, **kwargs) -> None:
  143. super().__init__(*args, **kwargs)
  144. def forward(self, x):
  145. return
  146. # -------------------- Human-Pose predictor --------------------
  147. class PosePDLayer(nn.Module):
  148. def __init__(self, *args, **kwargs) -> None:
  149. super().__init__(*args, **kwargs)
  150. def forward(self, x):
  151. return