| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- import torch
- import torch.distributed as dist
- from torchvision.ops.boxes import box_area
- # ------------------------- For box -------------------------
- def box_iou(boxes1, boxes2):
- area1 = box_area(boxes1)
- area2 = box_area(boxes2)
- lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
- rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
- wh = (rb - lt).clamp(min=0) # [N,M,2]
- inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
- union = area1[:, None] + area2 - inter
- iou = inter / union
- return iou, union
- def get_ious(bboxes1,
- bboxes2,
- box_mode="xyxy",
- iou_type="iou"):
- """
- Compute iou loss of type ['iou', 'giou', 'linear_iou']
- Args:
- inputs (tensor): pred values
- targets (tensor): target values
- weight (tensor): loss weight
- box_mode (str): 'xyxy' or 'ltrb', 'ltrb' is currently supported.
- loss_type (str): 'giou' or 'iou' or 'linear_iou'
- reduction (str): reduction manner
- Returns:
- loss (tensor): computed iou loss.
- """
- if box_mode == "ltrb":
- bboxes1 = torch.cat((-bboxes1[..., :2], bboxes1[..., 2:]), dim=-1)
- bboxes2 = torch.cat((-bboxes2[..., :2], bboxes2[..., 2:]), dim=-1)
- elif box_mode != "xyxy":
- raise NotImplementedError
- eps = torch.finfo(torch.float32).eps
- bboxes1_area = (bboxes1[..., 2] - bboxes1[..., 0]).clamp_(min=0) \
- * (bboxes1[..., 3] - bboxes1[..., 1]).clamp_(min=0)
- bboxes2_area = (bboxes2[..., 2] - bboxes2[..., 0]).clamp_(min=0) \
- * (bboxes2[..., 3] - bboxes2[..., 1]).clamp_(min=0)
- w_intersect = (torch.min(bboxes1[..., 2], bboxes2[..., 2])
- - torch.max(bboxes1[..., 0], bboxes2[..., 0])).clamp_(min=0)
- h_intersect = (torch.min(bboxes1[..., 3], bboxes2[..., 3])
- - torch.max(bboxes1[..., 1], bboxes2[..., 1])).clamp_(min=0)
- area_intersect = w_intersect * h_intersect
- area_union = bboxes2_area + bboxes1_area - area_intersect
- ious = area_intersect / area_union.clamp(min=eps)
- if iou_type == "iou":
- return ious
- elif iou_type == "giou":
- g_w_intersect = torch.max(bboxes1[..., 2], bboxes2[..., 2]) \
- - torch.min(bboxes1[..., 0], bboxes2[..., 0])
- g_h_intersect = torch.max(bboxes1[..., 3], bboxes2[..., 3]) \
- - torch.min(bboxes1[..., 1], bboxes2[..., 1])
- ac_uion = g_w_intersect * g_h_intersect
- gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps)
- return gious
- else:
- raise NotImplementedError
- # ------------------------- For distributed -------------------------
- def is_dist_avail_and_initialized():
- if not dist.is_available():
- return False
- if not dist.is_initialized():
- return False
- return True
- def get_world_size():
- if not is_dist_avail_and_initialized():
- return 1
- return dist.get_world_size()
|