| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- import math
- import warnings
- import numpy as np
- import torch
- import torch.nn as nn
- def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
- """Copy from timm"""
- with torch.no_grad():
- """Copy from timm"""
- def norm_cdf(x):
- return (1. + math.erf(x / math.sqrt(2.))) / 2.
- if (mean < a - 2 * std) or (mean > b + 2 * std):
- warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
- "The distribution of values may be incorrect.",
- stacklevel=2)
- l = norm_cdf((a - mean) / std)
- u = norm_cdf((b - mean) / std)
- tensor.uniform_(2 * l - 1, 2 * u - 1)
- tensor.erfinv_()
- tensor.mul_(std * math.sqrt(2.))
- tensor.add_(mean)
- tensor.clamp_(min=a, max=b)
- return tensor
- # ---------------------------- NMS ----------------------------
- ## basic NMS
- def nms(bboxes, scores, nms_thresh):
- """"Pure Python NMS."""
- x1 = bboxes[:, 0] #xmin
- y1 = bboxes[:, 1] #ymin
- x2 = bboxes[:, 2] #xmax
- y2 = bboxes[:, 3] #ymax
- areas = (x2 - x1) * (y2 - y1)
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- # compute iou
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
- w = np.maximum(1e-10, xx2 - xx1)
- h = np.maximum(1e-10, yy2 - yy1)
- inter = w * h
- iou = inter / (areas[i] + areas[order[1:]] - inter + 1e-14)
- #reserve all the boundingbox whose ovr less than thresh
- inds = np.where(iou <= nms_thresh)[0]
- order = order[inds + 1]
- return keep
- ## class-agnostic NMS
- def multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh):
- # nms
- keep = nms(bboxes, scores, nms_thresh)
- scores = scores[keep]
- labels = labels[keep]
- bboxes = bboxes[keep]
- return scores, labels, bboxes
- ## class-aware NMS
- def multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes):
- # nms
- keep = np.zeros(len(bboxes), dtype=np.int32)
- for i in range(num_classes):
- inds = np.where(labels == i)[0]
- if len(inds) == 0:
- continue
- c_bboxes = bboxes[inds]
- c_scores = scores[inds]
- c_keep = nms(c_bboxes, c_scores, nms_thresh)
- keep[inds[c_keep]] = 1
- keep = np.where(keep > 0)
- scores = scores[keep]
- labels = labels[keep]
- bboxes = bboxes[keep]
- return scores, labels, bboxes
- ## multi-class NMS
- def multiclass_nms(scores, labels, bboxes, nms_thresh, num_classes, class_agnostic=False):
- if class_agnostic:
- return multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh)
- else:
- return multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes)
- # ----------------- Customed NormLayer Ops -----------------
- class LayerNorm2D(nn.Module):
- def __init__(self, normalized_shape, norm_layer=nn.LayerNorm):
- super().__init__()
- self.ln = norm_layer(normalized_shape) if norm_layer is not None else nn.Identity()
- def forward(self, x):
- """
- x: N C H W
- """
- x = x.permute(0, 2, 3, 1)
- x = self.ln(x)
- x = x.permute(0, 3, 1, 2)
- return x
- # ----------------- Basic CNN Ops -----------------
- def get_conv2d(c1, c2, k, p, s, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- elif act_type == 'gelu':
- return nn.GELU()
- elif act_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
-
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- elif norm_type is None:
- return nn.Identity()
- else:
- raise NotImplementedError
- class BasicConv(nn.Module):
- def __init__(self,
- in_dim, # in channels
- out_dim, # out channels
- kernel_size=1, # kernel size
- padding=0, # padding
- stride=1, # padding
- act_type :str = 'lrelu', # activation
- norm_type :str = 'BN', # normalization
- ):
- super(BasicConv, self).__init__()
- add_bias = False if norm_type else True
- self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, g=1, bias=add_bias)
- self.norm = get_norm(norm_type, out_dim)
- self.act = get_activation(act_type)
- def forward(self, x):
- return self.act(self.norm(self.conv(x)))
- class UpSampleWrapper(nn.Module):
- """Upsample last feat map to specific stride."""
- def __init__(self, in_dim, upsample_factor):
- super(UpSampleWrapper, self).__init__()
- # ---------- Basic parameters ----------
- self.upsample_factor = upsample_factor
- # ---------- Network parameters ----------
- if upsample_factor == 1:
- self.upsample = nn.Identity()
- else:
- scale = int(math.log2(upsample_factor))
- dim = in_dim
- layers = []
- for _ in range(scale-1):
- layers += [
- nn.ConvTranspose2d(dim, dim, kernel_size=2, stride=2),
- LayerNorm2D(dim),
- nn.GELU()
- ]
- layers += [nn.ConvTranspose2d(dim, dim, kernel_size=2, stride=2)]
- self.upsample = nn.Sequential(*layers)
- self.out_dim = dim
- def forward(self, x):
- x = self.upsample(x)
- return x
- # ----------------- MLP modules -----------------
- class MLP(nn.Module):
- def __init__(self, in_dim, hidden_dim, out_dim, num_layers):
- super().__init__()
- self.num_layers = num_layers
- h = [hidden_dim] * (num_layers - 1)
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([in_dim] + h, h + [out_dim]))
- def forward(self, x):
- for i, layer in enumerate(self.layers):
- x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
- return x
- class FFN(nn.Module):
- def __init__(self, d_model=256, mlp_ratio=4.0, dropout=0., act_type='relu', pre_norm=False):
- super().__init__()
- # ----------- Basic parameters -----------
- self.pre_norm = pre_norm
- self.fpn_dim = round(d_model * mlp_ratio)
- # ----------- Network parameters -----------
- self.linear1 = nn.Linear(d_model, self.fpn_dim)
- self.activation = get_activation(act_type)
- self.dropout2 = nn.Dropout(dropout)
- self.linear2 = nn.Linear(self.fpn_dim, d_model)
- self.dropout3 = nn.Dropout(dropout)
- self.norm = nn.LayerNorm(d_model)
- def forward(self, src):
- if self.pre_norm:
- src = self.norm(src)
- src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
- src = src + self.dropout3(src2)
- else:
- src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
- src = src + self.dropout3(src2)
- src = self.norm(src)
-
- return src
|