yolox.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. import torch
  2. import torch.nn as nn
  3. from .yolox_backbone import build_backbone
  4. from .yolox_pafpn import build_fpn
  5. from .yolox_head import build_head
  6. from utils.misc import multiclass_nms
  7. # YOLOX
  8. class YOLOX(nn.Module):
  9. def __init__(self,
  10. cfg,
  11. device,
  12. num_classes=20,
  13. conf_thresh=0.01,
  14. nms_thresh=0.5,
  15. topk=100,
  16. trainable=False,
  17. deploy = False):
  18. super(YOLOX, self).__init__()
  19. # --------- Basic Parameters ----------
  20. self.cfg = cfg
  21. self.device = device
  22. self.stride = [8, 16, 32]
  23. self.num_classes = num_classes
  24. self.trainable = trainable
  25. self.conf_thresh = conf_thresh
  26. self.nms_thresh = nms_thresh
  27. self.topk = topk
  28. self.deploy = deploy
  29. # ------------------- Network Structure -------------------
  30. ## 主干网络
  31. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  32. ## 颈部网络: 特征金字塔
  33. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  34. self.head_dim = self.fpn.out_dim
  35. ## 检测头
  36. self.non_shared_heads = nn.ModuleList(
  37. [build_head(cfg, head_dim, head_dim, num_classes)
  38. for head_dim in self.head_dim
  39. ])
  40. ## 预测层
  41. self.obj_preds = nn.ModuleList(
  42. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  43. for head in self.non_shared_heads
  44. ])
  45. self.cls_preds = nn.ModuleList(
  46. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  47. for head in self.non_shared_heads
  48. ])
  49. self.reg_preds = nn.ModuleList(
  50. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  51. for head in self.non_shared_heads
  52. ])
  53. # ---------------------- Basic Functions ----------------------
  54. ## generate anchor points
  55. def generate_anchors(self, level, fmp_size):
  56. """
  57. fmp_size: (List) [H, W]
  58. """
  59. # generate grid cells
  60. fmp_h, fmp_w = fmp_size
  61. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  62. # [H, W, 2] -> [HW, 2]
  63. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  64. anchor_xy += 0.5 # add center offset
  65. anchor_xy *= self.stride[level]
  66. anchors = anchor_xy.to(self.device)
  67. return anchors
  68. ## post-process
  69. def post_process(self, obj_preds, cls_preds, box_preds):
  70. """
  71. Input:
  72. obj_preds: List(Tensor) [[H x W, 1], ...]
  73. cls_preds: List(Tensor) [[H x W, C], ...]
  74. box_preds: List(Tensor) [[H x W, 4], ...]
  75. anchors: List(Tensor) [[H x W, 2], ...]
  76. """
  77. all_scores = []
  78. all_labels = []
  79. all_bboxes = []
  80. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  81. # (H x W x KA x C,)
  82. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  83. # Keep top k top scoring indices only.
  84. num_topk = min(self.topk, box_pred_i.size(0))
  85. # torch.sort is actually faster than .topk (at least on GPUs)
  86. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  87. topk_scores = predicted_prob[:num_topk]
  88. topk_idxs = topk_idxs[:num_topk]
  89. # filter out the proposals with low confidence score
  90. keep_idxs = topk_scores > self.conf_thresh
  91. scores = topk_scores[keep_idxs]
  92. topk_idxs = topk_idxs[keep_idxs]
  93. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  94. labels = topk_idxs % self.num_classes
  95. bboxes = box_pred_i[anchor_idxs]
  96. all_scores.append(scores)
  97. all_labels.append(labels)
  98. all_bboxes.append(bboxes)
  99. scores = torch.cat(all_scores)
  100. labels = torch.cat(all_labels)
  101. bboxes = torch.cat(all_bboxes)
  102. # to cpu & numpy
  103. scores = scores.cpu().numpy()
  104. labels = labels.cpu().numpy()
  105. bboxes = bboxes.cpu().numpy()
  106. # nms
  107. scores, labels, bboxes = multiclass_nms(
  108. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  109. return bboxes, scores, labels
  110. # ---------------------- Main Process for Inference ----------------------
  111. @torch.no_grad()
  112. def inference_single_image(self, x):
  113. # backbone
  114. pyramid_feats = self.backbone(x)
  115. # fpn
  116. pyramid_feats = self.fpn(pyramid_feats)
  117. # non-shared heads
  118. all_obj_preds = []
  119. all_cls_preds = []
  120. all_box_preds = []
  121. all_anchors = []
  122. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  123. cls_feat, reg_feat = head(feat)
  124. # [1, C, H, W]
  125. obj_pred = self.obj_preds[level](reg_feat)
  126. cls_pred = self.cls_preds[level](cls_feat)
  127. reg_pred = self.reg_preds[level](reg_feat)
  128. # anchors: [M, 2]
  129. fmp_size = cls_pred.shape[-2:]
  130. anchors = self.generate_anchors(level, fmp_size)
  131. # [1, C, H, W] -> [H, W, C] -> [M, C]
  132. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  133. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  134. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  135. # decode bbox
  136. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  137. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  138. pred_x1y1 = ctr_pred - wh_pred * 0.5
  139. pred_x2y2 = ctr_pred + wh_pred * 0.5
  140. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  141. all_obj_preds.append(obj_pred)
  142. all_cls_preds.append(cls_pred)
  143. all_box_preds.append(box_pred)
  144. all_anchors.append(anchors)
  145. if self.deploy:
  146. obj_preds = torch.cat(all_obj_preds, dim=0)
  147. cls_preds = torch.cat(all_cls_preds, dim=0)
  148. box_preds = torch.cat(all_box_preds, dim=0)
  149. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  150. bboxes = box_preds
  151. # [n_anchors_all, 4 + C]
  152. outputs = torch.cat([bboxes, scores], dim=-1)
  153. return outputs
  154. else:
  155. # post process
  156. bboxes, scores, labels = self.post_process(
  157. all_obj_preds, all_cls_preds, all_box_preds)
  158. return bboxes, scores, labels
  159. def forward(self, x):
  160. if not self.trainable:
  161. return self.inference_single_image(x)
  162. else:
  163. # backbone
  164. pyramid_feats = self.backbone(x)
  165. # fpn
  166. pyramid_feats = self.fpn(pyramid_feats)
  167. # non-shared heads
  168. all_anchors = []
  169. all_obj_preds = []
  170. all_cls_preds = []
  171. all_box_preds = []
  172. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  173. cls_feat, reg_feat = head(feat)
  174. # [B, C, H, W]
  175. obj_pred = self.obj_preds[level](reg_feat)
  176. cls_pred = self.cls_preds[level](cls_feat)
  177. reg_pred = self.reg_preds[level](reg_feat)
  178. B, _, H, W = cls_pred.size()
  179. fmp_size = [H, W]
  180. # generate anchor boxes: [M, 4]
  181. anchors = self.generate_anchors(level, fmp_size)
  182. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  183. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  184. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  185. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  186. # decode bbox
  187. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  188. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  189. pred_x1y1 = ctr_pred - wh_pred * 0.5
  190. pred_x2y2 = ctr_pred + wh_pred * 0.5
  191. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  192. all_obj_preds.append(obj_pred)
  193. all_cls_preds.append(cls_pred)
  194. all_box_preds.append(box_pred)
  195. all_anchors.append(anchors)
  196. # output dict
  197. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  198. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  199. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  200. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  201. 'strides': self.stride} # List(Int) [8, 16, 32]
  202. return outputs