| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- import torch
- import torch.nn as nn
- from .cnn_backbone import build_backbone
- from .cnn_neck import build_neck
- from .cnn_pafpn import build_fpn
- # ------------------------ Image Encoder ------------------------
- class ImageEncoder(nn.Module):
- def __init__(self, cfg, trainable=False) -> None:
- super().__init__()
- ## Backbone
- self.backbone, feats_dim = build_backbone(cfg, cfg['pretrained']*trainable)
- ## Encoder
- self.encoder = build_neck(cfg, feats_dim[-1], feats_dim[-1])
- ## CSFM
- self.csfm = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(cfg['d_model']*cfg['width']))
- def position_embedding(self, x, temperature=10000):
- hs, ws = x.shape[-2:]
- device = x.device
- num_pos_feats = x.shape[1] // 2
- scale = 2 * 3.141592653589793
- # generate xy coord mat
- y_embed, x_embed = torch.meshgrid(
- [torch.arange(1, hs+1, dtype=torch.float32),
- torch.arange(1, ws+1, dtype=torch.float32)])
- y_embed = y_embed / (hs + 1e-6) * scale
- x_embed = x_embed / (ws + 1e-6) * scale
-
- # [H, W] -> [1, H, W]
- y_embed = y_embed[None, :, :].to(device)
- x_embed = x_embed[None, :, :].to(device)
- dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=device)
- dim_t_ = torch.div(dim_t, 2, rounding_mode='floor') / num_pos_feats
- dim_t = temperature ** (2 * dim_t_)
- pos_x = torch.div(x_embed[:, :, :, None], dim_t)
- pos_y = torch.div(y_embed[:, :, :, None], dim_t)
- pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
- pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
- # [B, C, H, W]
- pos_embed = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
-
- return pos_embed
-
- def forward(self, x):
- # Backbone
- pyramid_feats = self.backbone(x)
- # Encoder
- pyramid_feats[-1] = self.encoder(pyramid_feats[-1])
- # CSFM
- pyramid_feats = self.csfm(pyramid_feats)
- # Prepare memory & memoery_pos for Decoder
- memory = torch.cat([feat.flatten(2) for feat in pyramid_feats], dim=-1)
- memory = memory.permute(0, 2, 1).contiguous()
- memory_pos = torch.cat([self.position_embedding(feat).flatten(2)
- for feat in pyramid_feats], dim=-1)
- memory_pos = memory_pos.permute(0, 2, 1).contiguous()
- return memory, memory_pos
- # build img-encoder
- def build_img_encoder(cfg, trainable):
- return ImageEncoder(cfg, trainable)
|