| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- import torch
- import torch.nn as nn
- try:
- from .yolov7_basic import Conv, ELANBlock, DownSample
- except:
- from yolov7_basic import Conv, ELANBlock, DownSample
-
- model_urls = {
- "elannet_tiny": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/yolov7_elannet_tiny.pth",
- "elannet_large": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/yolov7_elannet_large.pth",
- "elannet_huge": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/yolov7_elannet_huge.pth",
- }
- # --------------------- ELANNet -----------------------
- ## ELANNet-Tiny
- class ELANNet_Tiny(nn.Module):
- """
- ELAN-Net of YOLOv7-Tiny.
- """
- def __init__(self, act_type='silu', norm_type='BN', depthwise=False):
- super(ELANNet_Tiny, self).__init__()
- # -------------- Basic parameters --------------
- self.feat_dims = [32, 64, 128, 256, 512]
- self.squeeze_ratios = [0.5, 0.5, 0.5, 0.5] # Stage-1 -> Stage-4
- self.branch_depths = [1, 1, 1, 1] # Stage-1 -> Stage-4
-
- # -------------- Network parameters --------------
- ## P1/2
- self.layer_1 = Conv(3, self.feat_dims[0], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- ## P2/4: Stage-1
- self.layer_2 = nn.Sequential(
- Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[1], self.feat_dims[1], self.squeeze_ratios[0], self.branch_depths[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P3/8: Stage-2
- self.layer_3 = nn.Sequential(
- nn.MaxPool2d((2, 2), 2),
- ELANBlock(self.feat_dims[1], self.feat_dims[2], self.squeeze_ratios[1], self.branch_depths[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P4/16: Stage-3
- self.layer_4 = nn.Sequential(
- nn.MaxPool2d((2, 2), 2),
- ELANBlock(self.feat_dims[2], self.feat_dims[3], self.squeeze_ratios[2], self.branch_depths[2], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P5/32: Stage-4
- self.layer_5 = nn.Sequential(
- nn.MaxPool2d((2, 2), 2),
- ELANBlock(self.feat_dims[3], self.feat_dims[4], self.squeeze_ratios[3], self.branch_depths[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- ## ELANNet-Large
- class ELANNet_Lagre(nn.Module):
- def __init__(self, act_type='silu', norm_type='BN', depthwise=False):
- super(ELANNet_Lagre, self).__init__()
- # -------------------- Basic parameters --------------------
- self.feat_dims = [32, 64, 128, 256, 512, 1024, 1024]
- self.squeeze_ratios = [0.5, 0.5, 0.5, 0.25] # Stage-1 -> Stage-4
- self.branch_depths = [2, 2, 2, 2] # Stage-1 -> Stage-4
- # -------------------- Network parameters --------------------
- ## P1/2
- self.layer_1 = nn.Sequential(
- Conv(3, self.feat_dims[0], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- Conv(self.feat_dims[1], self.feat_dims[1], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P2/4: Stage-1
- self.layer_2 = nn.Sequential(
- Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[2], self.feat_dims[3], self.squeeze_ratios[0], self.branch_depths[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P3/8: Stage-2
- self.layer_3 = nn.Sequential(
- DownSample(self.feat_dims[3], self.feat_dims[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[3], self.feat_dims[4], self.squeeze_ratios[1], self.branch_depths[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P4/16: Stage-3
- self.layer_4 = nn.Sequential(
- DownSample(self.feat_dims[4], self.feat_dims[4], act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[4], self.feat_dims[5], self.squeeze_ratios[2], self.branch_depths[2], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P5/32: Stage-4
- self.layer_5 = nn.Sequential(
- DownSample(self.feat_dims[5], self.feat_dims[5], act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[5], self.feat_dims[6], self.squeeze_ratios[3], self.branch_depths[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- ## ELANNet-Huge
- class ELANNet_Huge(nn.Module):
- def __init__(self, act_type='silu', norm_type='BN', depthwise=False):
- super(ELANNet_Huge, self).__init__()
- # -------------------- Basic parameters --------------------
- self.feat_dims = [40, 80, 160, 320, 640, 1280, 1280]
- self.squeeze_ratios = [0.5, 0.5, 0.5, 0.25] # Stage-1 -> Stage-4
- self.branch_depths = [3, 3, 3, 3] # Stage-1 -> Stage-4
- # -------------------- Network parameters --------------------
- ## P1/2
- self.layer_1 = nn.Sequential(
- Conv(3, self.feat_dims[0], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- Conv(self.feat_dims[1], self.feat_dims[1], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P2/4: Stage-1
- self.layer_2 = nn.Sequential(
- Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[2], self.feat_dims[3], self.squeeze_ratios[0], self.branch_depths[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P3/8: Stage-2
- self.layer_3 = nn.Sequential(
- DownSample(self.feat_dims[3], self.feat_dims[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[3], self.feat_dims[4], self.squeeze_ratios[1], self.branch_depths[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P4/16: Stage-3
- self.layer_4 = nn.Sequential(
- DownSample(self.feat_dims[4], self.feat_dims[4], act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[4], self.feat_dims[5], self.squeeze_ratios[2], self.branch_depths[2], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- ## P5/32: Stage-4
- self.layer_5 = nn.Sequential(
- DownSample(self.feat_dims[5], self.feat_dims[5], act_type=act_type, norm_type=norm_type, depthwise=depthwise),
- ELANBlock(self.feat_dims[5], self.feat_dims[6], self.squeeze_ratios[3], self.branch_depths[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # --------------------- Functions -----------------------
- ## build backbone
- def build_backbone(cfg, pretrained=False):
- # build backbone
- if cfg['backbone'] == 'elannet_huge':
- backbone = ELANNet_Huge(cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw'])
- elif cfg['backbone'] == 'elannet_large':
- backbone = ELANNet_Lagre(cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw'])
- elif cfg['backbone'] == 'elannet_tiny':
- backbone = ELANNet_Tiny(cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw'])
- # pyramid feat dims
- feat_dims = backbone.feat_dims[-3:]
- # load imagenet pretrained weight
- if pretrained:
- url = model_urls[cfg['backbone']]
- if url is not None:
- print('Loading pretrained weight for {}.'.format(cfg['backbone'].upper()))
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = backbone.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print('Unused key: ', k)
- backbone.load_state_dict(checkpoint_state_dict)
- else:
- print('No backbone pretrained: ELANNet')
- return backbone, feat_dims
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'pretrained': False,
- 'backbone': 'elannet_tiny',
- 'bk_act': 'silu',
- 'bk_norm': 'BN',
- 'bk_dpw': False,
- }
- model, feats = build_backbone(cfg)
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|