rtdetr_config.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. # Real-time Transformer-based Object Detector
  2. # ------------------- Det task --------------------
  3. rtdetr_cfg = {
  4. 'rtdetr_r18':{
  5. # ---------------- Model config ----------------
  6. ## Image Encoder - Backbone
  7. 'backbone': 'resnet18',
  8. 'backbone_norm': 'BN',
  9. 'pretrained': True,
  10. 'pretrained_weight': 'imagenet1k_v1',
  11. 'freeze_at': -1,
  12. 'freeze_stem_only': True,
  13. 'out_stride': [8, 16, 32],
  14. 'max_stride': 32,
  15. ## Image Encoder - FPN
  16. 'fpn': 'hybrid_encoder',
  17. 'fpn_num_blocks': 3,
  18. 'fpn_expansion': 0.5,
  19. 'fpn_act': 'silu',
  20. 'fpn_norm': 'BN',
  21. 'fpn_depthwise': False,
  22. 'hidden_dim': 256,
  23. 'en_num_heads': 8,
  24. 'en_num_layers': 1,
  25. 'en_ffn_dim': 1024,
  26. 'en_dropout': 0.0,
  27. 'pe_temperature': 10000.,
  28. 'en_act': 'gelu',
  29. # Transformer Decoder
  30. 'transformer': 'rtdetr_transformer',
  31. 'de_num_heads': 8,
  32. 'de_num_layers': 3,
  33. 'de_ffn_dim': 1024,
  34. 'de_dropout': 0.0,
  35. 'de_act': 'relu',
  36. 'de_num_points': 4,
  37. 'num_queries': 300,
  38. 'learnt_init_query': False,
  39. 'pe_temperature': 10000.,
  40. 'dn_num_denoising': 100,
  41. 'dn_label_noise_ratio': 0.5,
  42. 'dn_box_noise_scale': 1,
  43. # ---------------- Assignment config ----------------
  44. 'matcher_hpy': {'cost_class': 2.0,
  45. 'cost_bbox': 5.0,
  46. 'cost_giou': 2.0,},
  47. # ---------------- Loss config ----------------
  48. 'use_vfl': True,
  49. 'loss_coeff': {'class': 1,
  50. 'bbox': 5,
  51. 'giou': 2,},
  52. # ---------------- Train config ----------------
  53. ## input
  54. 'multi_scale': [0.5, 1.25], # 320 -> 800
  55. 'trans_type': 'rtdetr_s',
  56. # ---------------- Train config ----------------
  57. 'trainer_type': 'rtdetr',
  58. },
  59. 'rtdetr_r50':{
  60. # ---------------- Model config ----------------
  61. ## Image Encoder - Backbone
  62. 'backbone': 'resnet50',
  63. 'backbone_norm': 'FrozeBN',
  64. 'pretrained': True,
  65. 'pretrained_weight': 'imagenet1k_v2',
  66. 'freeze_at': 0,
  67. 'freeze_stem_only': False,
  68. 'out_stride': [8, 16, 32],
  69. 'max_stride': 32,
  70. ## Image Encoder - FPN
  71. 'fpn': 'hybrid_encoder',
  72. 'fpn_num_blocks': 3,
  73. 'fpn_expansion': 1.0,
  74. 'fpn_act': 'silu',
  75. 'fpn_norm': 'BN',
  76. 'fpn_depthwise': False,
  77. 'hidden_dim': 256,
  78. 'en_num_heads': 8,
  79. 'en_num_layers': 1,
  80. 'en_ffn_dim': 1024,
  81. 'en_dropout': 0.0,
  82. 'pe_temperature': 10000.,
  83. 'en_act': 'gelu',
  84. # Transformer Decoder
  85. 'transformer': 'rtdetr_transformer',
  86. 'de_num_heads': 8,
  87. 'de_num_layers': 6,
  88. 'de_ffn_dim': 1024,
  89. 'de_dropout': 0.0,
  90. 'de_act': 'relu',
  91. 'de_num_points': 4,
  92. 'num_queries': 300,
  93. 'learnt_init_query': False,
  94. 'pe_temperature': 10000.,
  95. 'dn_num_denoising': 100,
  96. 'dn_label_noise_ratio': 0.5,
  97. 'dn_box_noise_scale': 1,
  98. # Head
  99. 'det_head': 'dino_head',
  100. # ---------------- Assignment config ----------------
  101. 'matcher_hpy': {'cost_class': 2.0,
  102. 'cost_bbox': 5.0,
  103. 'cost_giou': 2.0,},
  104. # ---------------- Loss config ----------------
  105. 'use_vfl': True,
  106. 'loss_coeff': {'class': 1,
  107. 'bbox': 5,
  108. 'giou': 2,},
  109. # ---------------- Train config ----------------
  110. ## input
  111. 'multi_scale': [0.5, 1.25], # 320 -> 800
  112. 'trans_type': 'rtdetr_l',
  113. # ---------------- Train config ----------------
  114. 'trainer_type': 'rtdetr',
  115. },
  116. }