yolox2.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolox2_backbone import build_backbone
  6. from .yolox2_neck import build_neck
  7. from .yolox2_pafpn import build_fpn
  8. from .yolox2_head import build_head
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. # YOLOX-2
  12. class YOLOX2(nn.Module):
  13. def __init__(self,
  14. cfg,
  15. device,
  16. num_classes = 20,
  17. conf_thresh = 0.05,
  18. nms_thresh = 0.6,
  19. trainable = False,
  20. topk = 1000,
  21. deploy = False):
  22. super(YOLOX2, self).__init__()
  23. # ---------------------- Basic Parameters ----------------------
  24. self.cfg = cfg
  25. self.device = device
  26. self.stride = cfg['stride']
  27. self.num_classes = num_classes
  28. self.trainable = trainable
  29. self.conf_thresh = conf_thresh
  30. self.nms_thresh = nms_thresh
  31. self.topk = topk
  32. self.deploy = deploy
  33. self.head_dim = round(256*cfg['width'])
  34. # ---------------------- Network Parameters ----------------------
  35. ## ----------- Backbone -----------
  36. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  37. ## ----------- Neck: SPP -----------
  38. self.neck = build_neck(cfg=cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  39. feats_dim[-1] = self.neck.out_dim
  40. ## ----------- Neck: FPN -----------
  41. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  42. self.fpn_dims = self.fpn.out_dim
  43. ## ----------- Heads -----------
  44. self.heads = build_head(cfg, self.fpn_dims, self.head_dim, num_classes)
  45. ## ----------- Preds -----------
  46. self.cls_preds = nn.ModuleList(
  47. [nn.Conv2d(self.head_dim, num_classes, kernel_size=1)
  48. for _ in range(len(self.stride))
  49. ])
  50. self.reg_preds = nn.ModuleList(
  51. [nn.Conv2d(self.head_dim, 4, kernel_size=1)
  52. for _ in range(len(self.stride))
  53. ])
  54. # ---------------------- Basic Functions ----------------------
  55. ## generate anchor points
  56. def generate_anchors(self, level, fmp_size):
  57. """
  58. fmp_size: (List) [H, W]
  59. """
  60. # generate grid cells
  61. fmp_h, fmp_w = fmp_size
  62. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  63. # [H, W, 2] -> [HW, 2]
  64. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  65. anchor_xy += 0.5 # add center offset
  66. anchor_xy *= self.stride[level]
  67. anchors = anchor_xy.to(self.device)
  68. return anchors
  69. ## post-process
  70. def post_process(self, cls_preds, box_preds):
  71. """
  72. Input:
  73. cls_preds: List(Tensor) [[H x W, C], ...]
  74. box_preds: List(Tensor) [[H x W, 4], ...]
  75. """
  76. all_scores = []
  77. all_labels = []
  78. all_bboxes = []
  79. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  80. # (H x W x C,)
  81. scores_i = cls_pred_i.sigmoid().flatten()
  82. # Keep top k top scoring indices only.
  83. num_topk = min(self.topk, box_pred_i.size(0))
  84. # torch.sort is actually faster than .topk (at least on GPUs)
  85. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  86. topk_scores = predicted_prob[:num_topk]
  87. topk_idxs = topk_idxs[:num_topk]
  88. # filter out the proposals with low confidence score
  89. keep_idxs = topk_scores > self.conf_thresh
  90. scores = topk_scores[keep_idxs]
  91. topk_idxs = topk_idxs[keep_idxs]
  92. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  93. labels = topk_idxs % self.num_classes
  94. bboxes = box_pred_i[anchor_idxs]
  95. all_scores.append(scores)
  96. all_labels.append(labels)
  97. all_bboxes.append(bboxes)
  98. scores = torch.cat(all_scores)
  99. labels = torch.cat(all_labels)
  100. bboxes = torch.cat(all_bboxes)
  101. # to cpu & numpy
  102. scores = scores.cpu().numpy()
  103. labels = labels.cpu().numpy()
  104. bboxes = bboxes.cpu().numpy()
  105. # nms
  106. scores, labels, bboxes = multiclass_nms(
  107. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  108. return bboxes, scores, labels
  109. # ---------------------- Main Process for Inference ----------------------
  110. @torch.no_grad()
  111. def inference_single_image(self, x):
  112. # ---------------- Backbone ----------------
  113. pyramid_feats = self.backbone(x)
  114. # ---------------- Neck: SPP ----------------
  115. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  116. # ---------------- Neck: PaFPN ----------------
  117. pyramid_feats = self.fpn(pyramid_feats)
  118. # ---------------- Heads ----------------
  119. cls_feats, reg_feats = self.heads(pyramid_feats)
  120. # ---------------- Preds ----------------
  121. all_cls_preds = []
  122. all_box_preds = []
  123. for level, (cls_feat, reg_feat) in enumerate(zip(cls_feats, reg_feats)):
  124. # prediction
  125. cls_pred = self.cls_preds[level](cls_feat)
  126. reg_pred = self.reg_preds[level](reg_feat)
  127. # anchors: [M, 2]
  128. fmp_size = cls_feat.shape[-2:]
  129. anchors = self.generate_anchors(level, fmp_size)
  130. # [1, C, H, W] -> [H, W, C] -> [M, C]
  131. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  132. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  133. # decode bbox
  134. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  135. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  136. pred_x1y1 = ctr_pred - wh_pred * 0.5
  137. pred_x2y2 = ctr_pred + wh_pred * 0.5
  138. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  139. all_cls_preds.append(cls_pred)
  140. all_box_preds.append(box_pred)
  141. if self.deploy:
  142. cls_preds = torch.cat(all_cls_preds, dim=0)
  143. box_preds = torch.cat(all_box_preds, dim=0)
  144. scores = cls_preds.sigmoid()
  145. bboxes = box_preds
  146. # [n_anchors_all, 4 + C]
  147. outputs = torch.cat([bboxes, scores], dim=-1)
  148. return outputs
  149. else:
  150. # post process
  151. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  152. return bboxes, scores, labels
  153. # ---------------------- Main Process for Training ----------------------
  154. def forward(self, x):
  155. if not self.trainable:
  156. return self.inference_single_image(x)
  157. else:
  158. # ---------------- Backbone ----------------
  159. pyramid_feats = self.backbone(x)
  160. # ---------------- Neck: SPP ----------------
  161. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  162. # ---------------- Neck: PaFPN ----------------
  163. pyramid_feats = self.fpn(pyramid_feats)
  164. # ---------------- Heads ----------------
  165. cls_feats, reg_feats = self.heads(pyramid_feats)
  166. # ---------------- Preds ----------------
  167. all_anchors = []
  168. all_cls_preds = []
  169. all_box_preds = []
  170. for level, (cls_feat, reg_feat) in enumerate(zip(cls_feats, reg_feats)):
  171. # prediction
  172. cls_pred = self.cls_preds[level](cls_feat)
  173. reg_pred = self.reg_preds[level](reg_feat)
  174. B, _, H, W = cls_pred.size()
  175. fmp_size = [H, W]
  176. # generate anchor boxes: [M, 4]
  177. anchors = self.generate_anchors(level, fmp_size)
  178. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  179. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  180. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  181. # decode bbox
  182. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  183. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  184. pred_x1y1 = ctr_pred - wh_pred * 0.5
  185. pred_x2y2 = ctr_pred + wh_pred * 0.5
  186. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  187. all_cls_preds.append(cls_pred)
  188. all_box_preds.append(box_pred)
  189. all_anchors.append(anchors)
  190. # output dict
  191. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  192. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  193. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  194. 'strides': self.stride} # List(Int) [8, 16, 32]
  195. return outputs