README.md 1.8 KB

YOLOv5:

  • For training, we train YOLOX series with 300 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of YOLOX.
  • For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64.
  • For learning rate scheduler, we use linear decay scheduler.
  • I am trying to retrain YOLOX-M and YOLOX-L with more GPUs, and I will update the AP of YOLOX-M and YOLOX-L in the table in the future.
Model Backbone Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
YOLOX-N CSPDarkNet-N 8xb8 640 30.4 48.9 7.5 2.3 ckpt
YOLOX-S CSPDarkNet-S 8xb8 640 39.0 58.8 26.8 8.9 ckpt
YOLOX-M CSPDarkNet-M 1xb16 640 44.6 63.8 74.3 25.4 ckpt
YOLOX-L CSPDarkNet-L 1xb16 640 46.9 65.9 155.4 54.2 ckpt