yjh0410 a7d44da089 update README 2 yıl önce
..
README.md a7d44da089 update README 2 yıl önce
build.py 3f8c6ecea7 add ONNX deployment 2 yıl önce
loss.py 0744feec35 add YOLOv7-Plus 2 yıl önce
matcher.py 7cf531e7da add Tracking 2 yıl önce
yolov5.py 3f8c6ecea7 add ONNX deployment 2 yıl önce
yolov5_backbone.py 22861e1213 train YOLOv5-S 2 yıl önce
yolov5_basic.py 7cf531e7da add Tracking 2 yıl önce
yolov5_head.py 7cf531e7da add Tracking 2 yıl önce
yolov5_neck.py 7cf531e7da add Tracking 2 yıl önce
yolov5_pafpn.py 7cf531e7da add Tracking 2 yıl önce

README.md

YOLOv5:

  • For training, we train YOLOv5 series with 300 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of YOLOv5.
  • For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
  • For learning rate scheduler, we use linear decay scheduler.
  • For YOLOv5's structure, we use decoupled head, following the setting of YOLOX.
  • For YOLOv5-M and YOLOv5-L, increasing the batch size may improve performance. Due to my computing resources, I can only set the batch size to 16.
Model Backbone Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
YOLOv5-N CSPDarkNet-N 1xb16 640 29.8 47.1 7.7 2.4 ckpt
YOLOv5-S CSPDarkNet-S 1xb16 640 37.8 56.5 27.1 9.0 ckpt
YOLOv5-M CSPDarkNet-M 1xb16 640 43.5 62.5 74.3 25.4 ckpt
YOLOv5-L CSPDarkNet-L 1xb16 640 46.7 65.5 155.6 54.2 ckpt