yjh0410 7ccf4060b5 train RTCDet-v1-X 2 سال پیش
..
README.md 7ccf4060b5 train RTCDet-v1-X 2 سال پیش
build.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
loss.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
matcher.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
rtcdet_v1.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
rtcdet_v1_backbone.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
rtcdet_v1_basic.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
rtcdet_v1_head.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
rtcdet_v1_neck.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
rtcdet_v1_pafpn.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش
rtcdet_v1_pred.py 2eb02320fc release RTCDet-v1 & rename RTMDet to RTCDet 2 سال پیش

README.md

RTCDet-v1: My First Empirical Study of Real-Time Convolutional Object Detectors.

  • For training, we train my RTCDetv1 series series with 300 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of YOLOX, but we remove the rotation transformation which is used in YOLOX's strong augmentation.
  • For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64.
  • For learning rate scheduler, we use linear decay scheduler.
  • Due to my limited computing resources, I can not train RTCDetv1-X with the setting of batch size=128.
Model Scale Batch APtest
0.5:0.95
APtest
0.5
APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
RTCDetv1-N 640 8xb16 35.7 53.8 35.6 53.8 9.1 2.4 ckpt
RTCDetv1-T 640 8xb16 40.5 59.1 40.3 59.1 19.0 5.1 ckpt
RTCDetv1-S 640 8xb16 43.6 62.6 43.3 62.6 33.6 9.0 ckpt
RTCDetv1-M 640 8xb16 48.3 67.0 48.1 66.9 87.4 23.6 ckpt
RTCDetv1-L 640 8xb16 50.2 68.6 50.0 68.4 176.6 47.6 ckpt
RTCDetv1-X 640 8xb12