train.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. from __future__ import division
  2. import os
  3. import argparse
  4. from copy import deepcopy
  5. # ----------------- Torch Components -----------------
  6. import torch
  7. import torch.distributed as dist
  8. from torch.nn.parallel import DistributedDataParallel as DDP
  9. # ----------------- Extra Components -----------------
  10. from utils import distributed_utils
  11. from utils.misc import compute_flops
  12. # ----------------- Config Components -----------------
  13. from config import build_dataset_config, build_model_config, build_trans_config
  14. # ----------------- Model Components -----------------
  15. from models.detectors import build_model
  16. # ----------------- Train Components -----------------
  17. from engine import build_trainer
  18. def parse_args():
  19. parser = argparse.ArgumentParser(description='YOLO-Tutorial')
  20. # basic
  21. parser.add_argument('--cuda', action='store_true', default=False,
  22. help='use cuda.')
  23. parser.add_argument('-size', '--img_size', default=640, type=int,
  24. help='input image size')
  25. parser.add_argument('--num_workers', default=4, type=int,
  26. help='Number of workers used in dataloading')
  27. parser.add_argument('--tfboard', action='store_true', default=False,
  28. help='use tensorboard')
  29. parser.add_argument('--save_folder', default='weights/', type=str,
  30. help='path to save weight')
  31. parser.add_argument('--eval_first', action='store_true', default=False,
  32. help='evaluate model before training.')
  33. parser.add_argument('--fp16', dest="fp16", action="store_true", default=False,
  34. help="Adopting mix precision training.")
  35. parser.add_argument('--vis_tgt', action="store_true", default=False,
  36. help="visualize training data.")
  37. parser.add_argument('--vis_aux_loss', action="store_true", default=False,
  38. help="visualize aux loss.")
  39. # Batchsize
  40. parser.add_argument('-bs', '--batch_size', default=16, type=int,
  41. help='batch size on all the GPUs.')
  42. # Epoch
  43. parser.add_argument('--max_epoch', default=150, type=int,
  44. help='max epoch.')
  45. parser.add_argument('--wp_epoch', default=1, type=int,
  46. help='warmup epoch.')
  47. parser.add_argument('--eval_epoch', default=10, type=int,
  48. help='after eval epoch, the model is evaluated on val dataset.')
  49. # model
  50. parser.add_argument('-m', '--model', default='yolov1', type=str,
  51. help='build yolo')
  52. parser.add_argument('-ct', '--conf_thresh', default=0.005, type=float,
  53. help='confidence threshold')
  54. parser.add_argument('-nt', '--nms_thresh', default=0.6, type=float,
  55. help='NMS threshold')
  56. parser.add_argument('--topk', default=1000, type=int,
  57. help='topk candidates for evaluation')
  58. parser.add_argument('-p', '--pretrained', default=None, type=str,
  59. help='load pretrained weight')
  60. parser.add_argument('-r', '--resume', default=None, type=str,
  61. help='keep training')
  62. # dataset
  63. parser.add_argument('--root', default='/mnt/share/ssd2/dataset',
  64. help='data root')
  65. parser.add_argument('-d', '--dataset', default='coco',
  66. help='coco, voc, widerface, crowdhuman')
  67. # train trick
  68. parser.add_argument('-ms', '--multi_scale', action='store_true', default=False,
  69. help='Multi scale')
  70. parser.add_argument('--ema', action='store_true', default=False,
  71. help='Model EMA')
  72. parser.add_argument('--min_box_size', default=8.0, type=float,
  73. help='min size of target bounding box.')
  74. parser.add_argument('--mosaic', default=None, type=float,
  75. help='mosaic augmentation.')
  76. parser.add_argument('--mixup', default=None, type=float,
  77. help='mixup augmentation.')
  78. # DDP train
  79. parser.add_argument('-dist', '--distributed', action='store_true', default=False,
  80. help='distributed training')
  81. parser.add_argument('--dist_url', default='env://',
  82. help='url used to set up distributed training')
  83. parser.add_argument('--world_size', default=1, type=int,
  84. help='number of distributed processes')
  85. parser.add_argument('--sybn', action='store_true', default=False,
  86. help='use sybn.')
  87. return parser.parse_args()
  88. def train():
  89. args = parse_args()
  90. print("Setting Arguments.. : ", args)
  91. print("----------------------------------------------------------")
  92. # Build DDP
  93. world_size = distributed_utils.get_world_size()
  94. print('World size: {}'.format(world_size))
  95. if args.distributed:
  96. distributed_utils.init_distributed_mode(args)
  97. print("git:\n {}\n".format(distributed_utils.get_sha()))
  98. # Build CUDA
  99. if args.cuda:
  100. print('use cuda')
  101. # cudnn.benchmark = True
  102. device = torch.device("cuda")
  103. else:
  104. device = torch.device("cpu")
  105. # Build Dataset & Model & Trans. Config
  106. data_cfg = build_dataset_config(args)
  107. model_cfg = build_model_config(args)
  108. trans_cfg = build_trans_config(model_cfg['trans_type'])
  109. # Build Model
  110. model, criterion = build_model(args, model_cfg, device, data_cfg['num_classes'], True)
  111. model = model.to(device).train()
  112. model_without_ddp = model
  113. if args.sybn and args.distributed:
  114. print('use SyncBatchNorm ...')
  115. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
  116. if args.distributed:
  117. model = DDP(model, device_ids=[args.gpu])
  118. model_without_ddp = model.module
  119. # Calcute Params & GFLOPs
  120. if distributed_utils.is_main_process:
  121. model_copy = deepcopy(model_without_ddp)
  122. model_copy.trainable = False
  123. model_copy.eval()
  124. compute_flops(model=model_copy,
  125. img_size=args.img_size,
  126. device=device)
  127. del model_copy
  128. if args.distributed:
  129. dist.barrier()
  130. # Build Trainer
  131. trainer = build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model_without_ddp, criterion)
  132. # --------------------------------- Train: Start ---------------------------------
  133. ## Eval before training
  134. if args.eval_first and distributed_utils.is_main_process():
  135. # to check whether the evaluator can work
  136. model_eval = model_without_ddp
  137. trainer.eval_one_epoch(model_eval)
  138. ## Satrt Training
  139. trainer.train(model)
  140. # --------------------------------- Train: End ---------------------------------
  141. # Empty cache after train loop
  142. del trainer
  143. if args.cuda:
  144. torch.cuda.empty_cache()
  145. if __name__ == '__main__':
  146. train()