rtdetr_config.py 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. # yolo-free config
  2. rtdetr_cfg = {
  3. # P5
  4. 'rtdetr_n': {
  5. # ---------------- Model config ----------------
  6. ## ------- Image Encoder -------
  7. ### CNN-Backbone
  8. 'backbone': 'elannet',
  9. 'pretrained': True,
  10. 'bk_act': 'silu',
  11. 'bk_norm': 'BN',
  12. 'bk_dpw': False,
  13. 'width': 0.25,
  14. 'depth': 0.34,
  15. 'stride': [8, 16, 32], # P3, P4, P5
  16. 'max_stride': 32,
  17. ### CNN-Neck
  18. 'neck': 'sppf',
  19. 'neck_expand_ratio': 0.5,
  20. 'pooling_size': 5,
  21. 'neck_act': 'silu',
  22. 'neck_norm': 'BN',
  23. 'neck_depthwise': False,
  24. ### CNN-CSFM
  25. 'fpn': 'yolo_pafpn',
  26. 'fpn_reduce_layer': 'conv',
  27. 'fpn_downsample_layer': 'conv',
  28. 'fpn_core_block': 'elanblock',
  29. 'fpn_act': 'silu',
  30. 'fpn_norm': 'BN',
  31. 'fpn_depthwise': False,
  32. ## ------- Transformer Decoder -------
  33. 'd_model': 256,
  34. 'attn_type': 'mhsa',
  35. 'num_decoder_layers': 6,
  36. 'num_queries': 300,
  37. 'de_dim_feedforward': 1024,
  38. 'de_num_heads': 8,
  39. 'de_dropout': 0.1,
  40. 'de_act': 'silu',
  41. 'de_norm': 'LN',
  42. # ---------------- Train config ----------------
  43. ## input
  44. 'multi_scale': [0.5, 1.0], # 320 -> 640
  45. 'trans_type': 'yolov5_nano',
  46. # ---------------- Assignment config ----------------
  47. ## matcher
  48. 'set_cost_class': 2.0,
  49. 'set_cost_bbox': 5.0,
  50. 'set_cost_giou': 2.0,
  51. # ---------------- Loss config ----------------
  52. ## loss weight
  53. 'focal_alpha': 0.25,
  54. 'loss_cls_weight': 1.0,
  55. 'loss_box_weight': 5.0,
  56. 'loss_giou_weight': 2.0,
  57. # ---------------- Train config ----------------
  58. ## close strong augmentation
  59. 'no_aug_epoch': 10,
  60. 'trainer_type': 'detr',
  61. ## optimizer
  62. 'optimizer': 'adamw',
  63. 'momentum': None,
  64. 'weight_decay': 1e-4,
  65. 'clip_grad': 0.1,
  66. ## model EMA
  67. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  68. 'ema_tau': 2000,
  69. ## lr schedule
  70. 'scheduler': 'linear',
  71. 'lr0': 0.0001, # SGD: 0.01; AdamW: 0.001
  72. 'lrf': 0.05, # SGD: 0.01; AdamW: 0.01
  73. 'warmup_momentum': 0.8,
  74. 'warmup_bias_lr': 0.1,
  75. },
  76. }