yolovx_pred.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. # Single-level pred layer
  5. class SingleLevelPredLayer(nn.Module):
  6. def __init__(self, cls_dim, reg_dim, num_classes, num_coords=4):
  7. super().__init__()
  8. # --------- Basic Parameters ----------
  9. self.cls_dim = cls_dim
  10. self.reg_dim = reg_dim
  11. self.num_classes = num_classes
  12. self.num_coords = num_coords
  13. # --------- Network Parameters ----------
  14. self.obj_pred = nn.Conv2d(reg_dim, 1, kernel_size=1)
  15. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  16. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  17. self.init_bias()
  18. def init_bias(self):
  19. # Init bias
  20. init_prob = 0.01
  21. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  22. # obj pred
  23. b = self.obj_pred.bias.view(1, -1)
  24. b.data.fill_(bias_value.item())
  25. self.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  26. # cls pred
  27. b = self.cls_pred.bias.view(1, -1)
  28. b.data.fill_(bias_value.item())
  29. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  30. # reg pred
  31. b = self.reg_pred.bias.view(-1, )
  32. b.data.fill_(1.0)
  33. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  34. w = self.reg_pred.weight
  35. w.data.fill_(0.)
  36. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  37. def forward(self, cls_feat, reg_feat):
  38. """
  39. in_feats: (Tensor) [B, C, H, W]
  40. """
  41. obj_pred = self.obj_pred(reg_feat)
  42. cls_pred = self.cls_pred(cls_feat)
  43. reg_pred = self.reg_pred(reg_feat)
  44. return obj_pred, cls_pred, reg_pred
  45. # Multi-level pred layer
  46. class MultiLevelPredLayer(nn.Module):
  47. def __init__(self, cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3, reg_max=16):
  48. super().__init__()
  49. # --------- Basic Parameters ----------
  50. self.cls_dim = cls_dim
  51. self.reg_dim = reg_dim
  52. self.strides = strides
  53. self.num_classes = num_classes
  54. self.num_coords = num_coords
  55. self.num_levels = num_levels
  56. self.reg_max = reg_max
  57. # ----------- Network Parameters -----------
  58. ## pred layers
  59. self.multi_level_preds = nn.ModuleList(
  60. [SingleLevelPredLayer(
  61. cls_dim,
  62. reg_dim,
  63. num_classes,
  64. num_coords * self.reg_max)
  65. for _ in range(num_levels)
  66. ])
  67. ## proj conv
  68. self.proj = nn.Parameter(torch.linspace(0, reg_max, reg_max), requires_grad=False)
  69. self.proj_conv = nn.Conv2d(self.reg_max, 1, kernel_size=1, bias=False)
  70. self.proj_conv.weight = nn.Parameter(self.proj.view([1, reg_max, 1, 1]).clone().detach(), requires_grad=False)
  71. def generate_anchors(self, level, fmp_size):
  72. """
  73. fmp_size: (List) [H, W]
  74. """
  75. # generate grid cells
  76. fmp_h, fmp_w = fmp_size
  77. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  78. # [H, W, 2] -> [HW, 2]
  79. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  80. anchors += 0.5 # add center offset
  81. anchors *= self.strides[level]
  82. return anchors
  83. def forward(self, cls_feats, reg_feats):
  84. all_anchors = []
  85. all_strides = []
  86. all_obj_preds = []
  87. all_cls_preds = []
  88. all_reg_preds = []
  89. all_box_preds = []
  90. for level in range(self.num_levels):
  91. # pred
  92. obj_pred, cls_pred, reg_pred = self.multi_level_preds[level](
  93. cls_feats[level], reg_feats[level])
  94. # generate anchor boxes: [M, 4]
  95. B, _, H, W = cls_pred.size()
  96. fmp_size = [H, W]
  97. anchors = self.generate_anchors(level, fmp_size)
  98. anchors = anchors.to(cls_pred.device)
  99. # stride tensor: [M, 1]
  100. stride_tensor = torch.ones_like(anchors[..., :1]) * self.strides[level]
  101. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  102. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  103. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  104. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  105. # ----------------------- Decode bbox -----------------------
  106. B, M = reg_pred.shape[:2]
  107. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max] -> [B, 4, M, reg_max]
  108. reg_pred_ = reg_pred.reshape([B, M, 4, self.reg_max])
  109. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  110. reg_pred_ = reg_pred_.permute(0, 3, 2, 1).contiguous()
  111. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  112. reg_pred_ = self.proj_conv(F.softmax(reg_pred_, dim=1))
  113. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  114. reg_pred_ = reg_pred_.view(B, 4, M).permute(0, 2, 1).contiguous()
  115. ## tlbr -> xyxy
  116. x1y1_pred = anchors[None] - reg_pred_[..., :2] * self.strides[level]
  117. x2y2_pred = anchors[None] + reg_pred_[..., 2:] * self.strides[level]
  118. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  119. all_obj_preds.append(obj_pred)
  120. all_cls_preds.append(cls_pred)
  121. all_reg_preds.append(reg_pred)
  122. all_box_preds.append(box_pred)
  123. all_anchors.append(anchors)
  124. all_strides.append(stride_tensor)
  125. # output dict
  126. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  127. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  128. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  129. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  130. "anchors": all_anchors, # List(Tensor) [M, 2]
  131. "strides": self.strides, # List(Int) = [8, 16, 32]
  132. "stride_tensor": all_strides # List(Tensor) [M, 1]
  133. }
  134. return outputs
  135. # build detection head
  136. def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  137. pred_layers = MultiLevelPredLayer(cls_dim, reg_dim, strides, num_classes, num_coords, num_levels)
  138. return pred_layers