loss.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox2dist, get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import AlignedSimOTA
  6. class Criterion(object):
  7. def __init__(self,
  8. cfg,
  9. device,
  10. num_classes=80):
  11. self.cfg = cfg
  12. self.device = device
  13. self.num_classes = num_classes
  14. # loss weight
  15. self.loss_obj_weight = cfg['loss_obj_weight']
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. self.loss_dfl_weight = cfg['loss_dfl_weight']
  19. # matcher
  20. matcher_config = cfg['matcher']
  21. self.matcher = AlignedSimOTA(
  22. num_classes=num_classes,
  23. center_sampling_radius=matcher_config['center_sampling_radius'],
  24. topk_candidate=matcher_config['topk_candicate']
  25. )
  26. def loss_objectness(self, pred_obj, gt_obj):
  27. loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
  28. return loss_obj
  29. def loss_classes(self, pred_cls, gt_label):
  30. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
  31. return loss_cls
  32. def loss_bboxes(self, pred_box, gt_box):
  33. # regression loss
  34. ious = get_ious(pred_box, gt_box, "xyxy", 'giou')
  35. loss_box = 1.0 - ious
  36. return loss_box
  37. def loss_dfl(self, pred_reg, gt_box, anchor, stride):
  38. # rescale coords by stride
  39. gt_box_s = gt_box / stride
  40. anchor_s = anchor / stride
  41. # compute deltas
  42. gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.cfg['reg_max'] - 1)
  43. gt_left = gt_ltrb_s.to(torch.long)
  44. gt_right = gt_left + 1
  45. weight_left = gt_right.to(torch.float) - gt_ltrb_s
  46. weight_right = 1 - weight_left
  47. # loss left
  48. loss_left = F.cross_entropy(
  49. pred_reg.view(-1, self.cfg['reg_max']),
  50. gt_left.view(-1),
  51. reduction='none').view(gt_left.shape) * weight_left
  52. # loss right
  53. loss_right = F.cross_entropy(
  54. pred_reg.view(-1, self.cfg['reg_max']),
  55. gt_right.view(-1),
  56. reduction='none').view(gt_left.shape) * weight_right
  57. loss_dfl = (loss_left + loss_right).mean(-1, keepdim=True)
  58. return loss_dfl
  59. def __call__(self, outputs, targets, epoch=0):
  60. """
  61. outputs['pred_obj']: List(Tensor) [B, M, 1]
  62. outputs['pred_cls']: List(Tensor) [B, M, C]
  63. outputs['pred_box']: List(Tensor) [B, M, 4]
  64. outputs['strides']: List(Int) [8, 16, 32] output stride
  65. targets: (List) [dict{'boxes': [...],
  66. 'labels': [...],
  67. 'orig_size': ...}, ...]
  68. """
  69. bs = outputs['pred_cls'][0].shape[0]
  70. device = outputs['pred_cls'][0].device
  71. fpn_strides = outputs['strides']
  72. anchors = outputs['anchors']
  73. # preds: [B, M, C]
  74. obj_preds = torch.cat(outputs['pred_obj'], dim=1)
  75. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  76. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  77. box_preds = torch.cat(outputs['pred_box'], dim=1)
  78. # --------------- label assignment ---------------
  79. obj_targets = []
  80. cls_targets = []
  81. box_targets = []
  82. fg_masks = []
  83. for batch_idx in range(bs):
  84. tgt_labels = targets[batch_idx]["labels"].to(device)
  85. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  86. # check target
  87. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  88. num_anchors = sum([ab.shape[0] for ab in anchors])
  89. # There is no valid gt
  90. cls_target = obj_preds.new_zeros((0, self.num_classes))
  91. box_target = obj_preds.new_zeros((0, 4))
  92. obj_target = obj_preds.new_zeros((num_anchors, 1))
  93. fg_mask = obj_preds.new_zeros(num_anchors).bool()
  94. else:
  95. (
  96. fg_mask,
  97. assigned_labels,
  98. assigned_ious,
  99. assigned_indexs
  100. ) = self.matcher(
  101. fpn_strides = fpn_strides,
  102. anchors = anchors,
  103. pred_obj = obj_preds[batch_idx],
  104. pred_cls = cls_preds[batch_idx],
  105. pred_box = box_preds[batch_idx],
  106. tgt_labels = tgt_labels,
  107. tgt_bboxes = tgt_bboxes
  108. )
  109. obj_target = fg_mask.unsqueeze(-1)
  110. cls_target = F.one_hot(assigned_labels.long(), self.num_classes)
  111. cls_target = cls_target * assigned_ious.unsqueeze(-1)
  112. box_target = tgt_bboxes[assigned_indexs]
  113. cls_targets.append(cls_target)
  114. box_targets.append(box_target)
  115. obj_targets.append(obj_target)
  116. fg_masks.append(fg_mask)
  117. cls_targets = torch.cat(cls_targets, 0)
  118. box_targets = torch.cat(box_targets, 0)
  119. obj_targets = torch.cat(obj_targets, 0)
  120. fg_masks = torch.cat(fg_masks, 0)
  121. num_fgs = fg_masks.sum()
  122. if is_dist_avail_and_initialized():
  123. torch.distributed.all_reduce(num_fgs)
  124. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  125. # ------------------ Objecntness loss ------------------
  126. loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
  127. loss_obj = loss_obj.sum() / num_fgs
  128. # ------------------ Classification loss ------------------
  129. cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
  130. loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
  131. loss_cls = loss_cls.sum() / num_fgs
  132. # ------------------ Regression loss ------------------
  133. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  134. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  135. loss_box = loss_box.sum() / num_fgs
  136. # ------------------ Distribution focal loss ------------------
  137. ## process anchors
  138. anchors = torch.cat(anchors, dim=0)
  139. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  140. ## process stride tensors
  141. strides = torch.cat(outputs['stride_tensor'], dim=0)
  142. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  143. ## fg preds
  144. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
  145. anchors_pos = anchors[fg_masks]
  146. strides_pos = strides[fg_masks]
  147. ## compute dfl
  148. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets, anchors_pos, strides_pos)
  149. loss_dfl = loss_dfl.sum() / num_fgs
  150. # total loss
  151. losses = self.loss_obj_weight * loss_obj + \
  152. self.loss_cls_weight * loss_cls + \
  153. self.loss_box_weight * loss_box + \
  154. self.loss_dfl_weight * loss_dfl
  155. loss_dict = dict(
  156. loss_obj = loss_obj,
  157. loss_cls = loss_cls,
  158. loss_box = loss_box,
  159. loss_dfl = loss_dfl,
  160. losses = losses
  161. )
  162. return loss_dict
  163. def build_criterion(cfg, device, num_classes):
  164. criterion = Criterion(
  165. cfg=cfg,
  166. device=device,
  167. num_classes=num_classes
  168. )
  169. return criterion
  170. if __name__ == "__main__":
  171. pass