rtpdetr.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. try:
  5. from .basic_modules.basic import MLP
  6. from .basic_modules.transformer import get_clones
  7. from .rtpdetr_encoder import build_image_encoder
  8. from .rtpdetr_decoder import build_transformer
  9. except:
  10. from basic_modules.basic import MLP
  11. from basic_modules.transformer import get_clones
  12. from rtpdetr_encoder import build_image_encoder
  13. from rtpdetr_decoder import build_transformer
  14. # Real-time Plain Transformer-based Object Detector
  15. class RT_PDETR(nn.Module):
  16. def __init__(self,
  17. cfg,
  18. num_classes = 80,
  19. conf_thresh = 0.1,
  20. topk = 300,
  21. deploy = False,
  22. no_multi_labels = False,
  23. aux_loss = False,
  24. ):
  25. super().__init__()
  26. # ----------- Basic setting -----------
  27. self.num_queries_one2one = cfg['num_queries_one2one']
  28. self.num_queries_one2many = cfg['num_queries_one2many']
  29. self.num_queries = self.num_queries_one2one + self.num_queries_one2many
  30. self.num_classes = num_classes
  31. self.num_topk = topk
  32. self.aux_loss = aux_loss
  33. self.conf_thresh = conf_thresh
  34. self.no_multi_labels = no_multi_labels
  35. self.deploy = deploy
  36. # scale hidden channels by width_factor
  37. cfg['hidden_dim'] = round(cfg['hidden_dim'] * cfg['width'])
  38. # ----------- Network setting -----------
  39. ## Image encoder
  40. self.image_encoder = build_image_encoder(cfg)
  41. ## Transformer Decoder
  42. self.transformer = build_transformer(cfg, return_intermediate=self.training)
  43. self.query_embed = nn.Embedding(self.num_queries, cfg['hidden_dim'])
  44. ## Detect Head
  45. class_embed = nn.Linear(cfg['hidden_dim'], num_classes)
  46. bbox_embed = MLP(cfg['hidden_dim'], cfg['hidden_dim'], 4, 3)
  47. prior_prob = 0.01
  48. bias_value = -math.log((1 - prior_prob) / prior_prob)
  49. class_embed.bias.data = torch.ones(num_classes) * bias_value
  50. nn.init.constant_(bbox_embed.layers[-1].weight.data, 0)
  51. nn.init.constant_(bbox_embed.layers[-1].bias.data, 0)
  52. self.class_embed = get_clones(class_embed, cfg['de_num_layers'] + 1)
  53. self.bbox_embed = get_clones(bbox_embed, cfg['de_num_layers'] + 1)
  54. nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
  55. self.transformer.decoder.bbox_embed = self.bbox_embed
  56. self.transformer.decoder.class_embed = self.class_embed
  57. def pos2posembed(self, d_model, pos, temperature=10000):
  58. scale = 2 * torch.pi
  59. num_pos_feats = d_model // 2
  60. dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)
  61. dim_t_ = torch.div(dim_t, 2, rounding_mode='floor') / num_pos_feats
  62. dim_t = temperature ** (2 * dim_t_)
  63. # Position embedding for XY
  64. x_embed = pos[..., 0] * scale
  65. y_embed = pos[..., 1] * scale
  66. pos_x = x_embed[..., None] / dim_t
  67. pos_y = y_embed[..., None] / dim_t
  68. pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), dim=-1).flatten(-2)
  69. pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), dim=-1).flatten(-2)
  70. posemb = torch.cat((pos_y, pos_x), dim=-1)
  71. # Position embedding for WH
  72. if pos.size(-1) == 4:
  73. w_embed = pos[..., 2] * scale
  74. h_embed = pos[..., 3] * scale
  75. pos_w = w_embed[..., None] / dim_t
  76. pos_h = h_embed[..., None] / dim_t
  77. pos_w = torch.stack((pos_w[..., 0::2].sin(), pos_w[..., 1::2].cos()), dim=-1).flatten(-2)
  78. pos_h = torch.stack((pos_h[..., 0::2].sin(), pos_h[..., 1::2].cos()), dim=-1).flatten(-2)
  79. posemb = torch.cat((posemb, pos_w, pos_h), dim=-1)
  80. return posemb
  81. def get_posembed(self, d_model, mask, temperature=10000, normalize=False):
  82. not_mask = ~mask
  83. # [B, H, W]
  84. y_embed = not_mask.cumsum(1, dtype=torch.float32)
  85. x_embed = not_mask.cumsum(2, dtype=torch.float32)
  86. if normalize:
  87. y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + 1e-6)
  88. x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + 1e-6)
  89. else:
  90. y_embed = y_embed - 0.5
  91. x_embed = x_embed - 0.5
  92. # [H, W] -> [B, H, W, 2]
  93. pos = torch.stack([x_embed, y_embed], dim=-1)
  94. # [B, H, W, C]
  95. pos_embed = self.pos2posembed(d_model, pos, temperature)
  96. pos_embed = pos_embed.permute(0, 3, 1, 2)
  97. return pos_embed
  98. def post_process(self, box_pred, cls_pred):
  99. cls_pred = cls_pred[0]
  100. box_pred = box_pred[0]
  101. if self.no_multi_labels:
  102. # [M,]
  103. scores, labels = torch.max(cls_pred.sigmoid(), dim=1)
  104. # Keep top k top scoring indices only.
  105. num_topk = min(self.num_topk, box_pred.size(0))
  106. # Topk candidates
  107. predicted_prob, topk_idxs = scores.sort(descending=True)
  108. topk_scores = predicted_prob[:num_topk]
  109. topk_idxs = topk_idxs[:num_topk]
  110. # Filter out the proposals with low confidence score
  111. keep_idxs = topk_scores > self.conf_thresh
  112. topk_idxs = topk_idxs[keep_idxs]
  113. # Top-k results
  114. topk_scores = topk_scores[keep_idxs]
  115. topk_labels = labels[topk_idxs]
  116. topk_bboxes = box_pred[topk_idxs]
  117. else:
  118. # Top-k select
  119. cls_pred = cls_pred.flatten().sigmoid_()
  120. box_pred = box_pred
  121. # Keep top k top scoring indices only.
  122. num_topk = min(self.num_topk, box_pred.size(0))
  123. # Topk candidates
  124. predicted_prob, topk_idxs = cls_pred.sort(descending=True)
  125. topk_scores = predicted_prob[:num_topk]
  126. topk_idxs = topk_idxs[:self.num_topk]
  127. # Filter out the proposals with low confidence score
  128. keep_idxs = topk_scores > self.conf_thresh
  129. topk_scores = topk_scores[keep_idxs]
  130. topk_idxs = topk_idxs[keep_idxs]
  131. topk_box_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  132. ## Top-k results
  133. topk_labels = topk_idxs % self.num_classes
  134. topk_bboxes = box_pred[topk_box_idxs]
  135. return topk_bboxes, topk_scores, topk_labels
  136. @torch.jit.unused
  137. def _set_aux_loss(self, outputs_class, outputs_coord, outputs_coord_old, outputs_deltas):
  138. # this is a workaround to make torchscript happy, as torchscript
  139. # doesn't support dictionary with non-homogeneous values, such
  140. # as a dict having both a Tensor and a list.
  141. return [
  142. {"pred_logits": a, "pred_boxes": b, "pred_boxes_old": c, "pred_deltas": d, }
  143. for a, b, c, d in zip(outputs_class[:-1], outputs_coord[:-1], outputs_coord_old[:-1], outputs_deltas[:-1])
  144. ]
  145. def inference_single_image(self, x):
  146. # ----------- Image Encoder -----------
  147. src = self.image_encoder(x)
  148. # ----------- Prepare inputs for Transformer -----------
  149. mask = torch.zeros([src.shape[0], src.shape[2], src.shape[3]]).bool().to(src.device)
  150. pos_embed = self.get_posembed(src.shape[1], mask, normalize=False)
  151. self_attn_mask = None
  152. query_embeds = self.query_embed.weight[:self.num_queries_one2one]
  153. # -----------Transformer -----------
  154. (
  155. hs,
  156. init_reference,
  157. inter_references,
  158. _,
  159. _,
  160. _,
  161. _,
  162. max_shape
  163. ) = self.transformer(src, mask, pos_embed, query_embeds, self_attn_mask)
  164. # ----------- Process outputs -----------
  165. outputs_classes_one2one = []
  166. outputs_coords_one2one = []
  167. outputs_deltas_one2one = []
  168. for lid in range(hs.shape[0]):
  169. if lid == 0:
  170. reference = init_reference
  171. else:
  172. reference = inter_references[lid - 1]
  173. outputs_class = self.class_embed[lid](hs[lid])
  174. tmp = self.bbox_embed[lid](hs[lid])
  175. outputs_coord = self.transformer.decoder.delta2bbox(reference, tmp, max_shape) # xyxy
  176. outputs_classes_one2one.append(outputs_class[:, :self.num_queries_one2one])
  177. outputs_coords_one2one.append(outputs_coord[:, :self.num_queries_one2one])
  178. outputs_deltas_one2one.append(tmp[:, :self.num_queries_one2one])
  179. outputs_classes_one2one = torch.stack(outputs_classes_one2one)
  180. outputs_coords_one2one = torch.stack(outputs_coords_one2one)
  181. # ------------ Post process ------------
  182. cls_pred = outputs_classes_one2one[-1]
  183. box_pred = outputs_coords_one2one[-1]
  184. # post-process
  185. bboxes, scores, labels = self.post_process(box_pred, cls_pred)
  186. outputs = {
  187. "scores": scores.cpu().numpy(),
  188. "labels": labels.cpu().numpy(),
  189. "bboxes": bboxes.cpu().numpy(),
  190. }
  191. return outputs
  192. def forward(self, x):
  193. if not self.training:
  194. return self.inference_single_image(x)
  195. # ----------- Image Encoder -----------
  196. src = self.image_encoder(x)
  197. # ----------- Prepare inputs for Transformer -----------
  198. mask = torch.zeros([src.shape[0], src.shape[2], src.shape[3]]).bool().to(src.device)
  199. pos_embed = self.get_posembed(src.shape[1], mask, normalize=False)
  200. self_attn_mask = torch.zeros(
  201. [self.num_queries, self.num_queries, ]).bool().to(src.device)
  202. self_attn_mask[self.num_queries_one2one:, 0: self.num_queries_one2one, ] = True
  203. self_attn_mask[0: self.num_queries_one2one, self.num_queries_one2one:, ] = True
  204. query_embeds = self.query_embed.weight
  205. # -----------Transformer -----------
  206. (
  207. hs,
  208. init_reference,
  209. inter_references,
  210. enc_outputs_class,
  211. enc_outputs_coord_unact,
  212. enc_outputs_delta,
  213. output_proposals,
  214. max_shape
  215. ) = self.transformer(src, mask, pos_embed, query_embeds, self_attn_mask)
  216. # ----------- Process outputs -----------
  217. outputs_classes_one2one = []
  218. outputs_coords_one2one = []
  219. outputs_classes_one2many = []
  220. outputs_coords_one2many = []
  221. outputs_coords_old_one2one = []
  222. outputs_deltas_one2one = []
  223. outputs_coords_old_one2many = []
  224. outputs_deltas_one2many = []
  225. for lid in range(hs.shape[0]):
  226. if lid == 0:
  227. reference = init_reference
  228. else:
  229. reference = inter_references[lid - 1]
  230. outputs_class = self.class_embed[lid](hs[lid])
  231. tmp = self.bbox_embed[lid](hs[lid])
  232. outputs_coord = self.transformer.decoder.box_xyxy_to_cxcywh(
  233. self.transformer.decoder.delta2bbox(reference, tmp, max_shape))
  234. outputs_classes_one2one.append(outputs_class[:, 0: self.num_queries_one2one])
  235. outputs_classes_one2many.append(outputs_class[:, self.num_queries_one2one:])
  236. outputs_coords_one2one.append(outputs_coord[:, 0: self.num_queries_one2one])
  237. outputs_coords_one2many.append(outputs_coord[:, self.num_queries_one2one:])
  238. outputs_coords_old_one2one.append(reference[:, :self.num_queries_one2one])
  239. outputs_coords_old_one2many.append(reference[:, self.num_queries_one2one:])
  240. outputs_deltas_one2one.append(tmp[:, :self.num_queries_one2one])
  241. outputs_deltas_one2many.append(tmp[:, self.num_queries_one2one:])
  242. outputs_classes_one2one = torch.stack(outputs_classes_one2one)
  243. outputs_coords_one2one = torch.stack(outputs_coords_one2one)
  244. outputs_classes_one2many = torch.stack(outputs_classes_one2many)
  245. outputs_coords_one2many = torch.stack(outputs_coords_one2many)
  246. out = {
  247. "pred_logits": outputs_classes_one2one[-1],
  248. "pred_boxes": outputs_coords_one2one[-1],
  249. "pred_logits_one2many": outputs_classes_one2many[-1],
  250. "pred_boxes_one2many": outputs_coords_one2many[-1],
  251. "pred_boxes_old": outputs_coords_old_one2one[-1],
  252. "pred_deltas": outputs_deltas_one2one[-1],
  253. "pred_boxes_old_one2many": outputs_coords_old_one2many[-1],
  254. "pred_deltas_one2many": outputs_deltas_one2many[-1],
  255. }
  256. out["aux_outputs"] = self._set_aux_loss(
  257. outputs_classes_one2one, outputs_coords_one2one, outputs_coords_old_one2one, outputs_deltas_one2one
  258. )
  259. out["aux_outputs_one2many"] = self._set_aux_loss(
  260. outputs_classes_one2many, outputs_coords_one2many, outputs_coords_old_one2many, outputs_deltas_one2many
  261. )
  262. out["enc_outputs"] = {
  263. "pred_logits": enc_outputs_class,
  264. "pred_boxes": enc_outputs_coord_unact,
  265. "pred_boxes_old": output_proposals,
  266. "pred_deltas": enc_outputs_delta,
  267. }
  268. return out
  269. if __name__ == '__main__':
  270. import time
  271. from thop import profile
  272. from loss import build_criterion
  273. # Model config
  274. cfg = {
  275. 'width': 1.0,
  276. 'depth': 1.0,
  277. 'max_stride': 32,
  278. 'out_stride': 16,
  279. # Image Encoder - Backbone
  280. 'backbone': 'resnet50',
  281. 'backbone_norm': 'FrozeBN',
  282. 'pretrained': True,
  283. 'freeze_at': 0,
  284. 'freeze_stem_only': False,
  285. 'hidden_dim': 256,
  286. 'en_num_heads': 8,
  287. 'en_num_layers': 1,
  288. 'en_mlp_ratio': 4.0,
  289. 'en_dropout': 0.0,
  290. 'en_act': 'gelu',
  291. # Transformer Decoder
  292. 'transformer': 'plain_detr_transformer',
  293. 'hidden_dim': 256,
  294. 'de_num_heads': 8,
  295. 'de_num_layers': 6,
  296. 'de_mlp_ratio': 4.0,
  297. 'de_dropout': 0.0,
  298. 'de_act': 'gelu',
  299. 'de_pre_norm': True,
  300. 'rpe_hidden_dim': 512,
  301. 'use_checkpoint': False,
  302. 'proposal_feature_levels': 3,
  303. 'proposal_tgt_strides': [8, 16, 32],
  304. 'num_queries_one2one': 300,
  305. 'num_queries_one2many': 300,
  306. # Matcher
  307. 'matcher_hpy': {'cost_class': 2.0,
  308. 'cost_bbox': 1.0,
  309. 'cost_giou': 2.0,},
  310. # Loss
  311. 'use_vfl': True,
  312. 'k_one2many': 6,
  313. 'lambda_one2many': 1.0,
  314. 'loss_coeff': {'class': 2,
  315. 'bbox': 1,
  316. 'giou': 2,
  317. 'no_object': 0.1,},
  318. }
  319. bs = 1
  320. # Create a batch of images & targets
  321. image = torch.randn(bs, 3, 640, 640)
  322. targets = [{
  323. 'labels': torch.tensor([2, 4, 5, 8]).long(),
  324. 'boxes': torch.tensor([[0, 0, 10, 10], [12, 23, 56, 70], [0, 10, 20, 30], [50, 60, 55, 150]]).float() / 640.
  325. }] * bs
  326. # Create model
  327. model = RT_PDETR(cfg, num_classes=80)
  328. model.train()
  329. # Model inference
  330. t0 = time.time()
  331. outputs = model(image)
  332. t1 = time.time()
  333. print('Infer time: ', t1 - t0)
  334. # Create criterion
  335. criterion = build_criterion(cfg, num_classes=80, aux_loss=True)
  336. # Compute loss
  337. loss = criterion(outputs, targets)
  338. for k in loss.keys():
  339. print("{} : {}".format(k, loss[k].item()))
  340. print('==============================')
  341. model.eval()
  342. flops, params = profile(model, inputs=(image, ), verbose=False)
  343. print('==============================')
  344. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  345. print('Params : {:.2f} M'.format(params / 1e6))