yolov7_config.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. # YOLOv7 Config
  2. yolov7_cfg = {
  3. 'yolov7_tiny':{
  4. # input
  5. 'trans_type': 'yolov5_nano',
  6. 'multi_scale': [0.5, 1.5], # 320 -> 960
  7. # model
  8. 'backbone': 'elannet_tiny',
  9. 'pretrained': True,
  10. 'bk_act': 'silu',
  11. 'bk_norm': 'BN',
  12. 'bk_dpw': False,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. # neck
  16. 'neck': 'csp_sppf',
  17. 'expand_ratio': 0.5,
  18. 'pooling_size': 5,
  19. 'neck_act': 'silu',
  20. 'neck_norm': 'BN',
  21. 'neck_depthwise': False,
  22. # fpn
  23. 'fpn': 'yolov7_pafpn',
  24. 'fpn_act': 'silu',
  25. 'fpn_norm': 'BN',
  26. 'fpn_depthwise': False,
  27. 'nbranch': 2.0, # number of branch in ELANBlockFPN
  28. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  29. 'width': 0.5, # width factor of channel in FPN
  30. # head
  31. 'head': 'decoupled_head',
  32. 'head_act': 'silu',
  33. 'head_norm': 'BN',
  34. 'num_cls_head': 2,
  35. 'num_reg_head': 2,
  36. 'head_depthwise': False,
  37. # matcher
  38. 'matcher': {'center_sampling_radius': 2.5,
  39. 'topk_candicate': 10},
  40. # loss weight
  41. 'loss_obj_weight': 1.0,
  42. 'loss_cls_weight': 1.0,
  43. 'loss_box_weight': 5.0,
  44. # training configuration
  45. 'trainer_type': 'yolo',
  46. },
  47. 'yolov7':{
  48. # input
  49. 'trans_type': 'yolov5_large',
  50. 'multi_scale': [0.5, 1.25], # 320 -> 800
  51. # model
  52. 'backbone': 'elannet_large',
  53. 'pretrained': True,
  54. 'bk_act': 'silu',
  55. 'bk_norm': 'BN',
  56. 'bk_dpw': False,
  57. 'stride': [8, 16, 32], # P3, P4, P5
  58. 'max_stride': 32,
  59. # neck
  60. 'neck': 'csp_sppf',
  61. 'expand_ratio': 0.5,
  62. 'pooling_size': 5,
  63. 'neck_act': 'silu',
  64. 'neck_norm': 'BN',
  65. 'neck_depthwise': False,
  66. # fpn
  67. 'fpn': 'yolov7_pafpn',
  68. 'fpn_act': 'silu',
  69. 'fpn_norm': 'BN',
  70. 'fpn_depthwise': False,
  71. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  72. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  73. 'width': 1.0, # width factor of channel in FPN
  74. # head
  75. 'head': 'decoupled_head',
  76. 'head_act': 'silu',
  77. 'head_norm': 'BN',
  78. 'num_cls_head': 2,
  79. 'num_reg_head': 2,
  80. 'head_depthwise': False,
  81. # matcher
  82. 'matcher': {'center_sampling_radius': 2.5,
  83. 'topk_candicate': 10},
  84. # loss weight
  85. 'loss_obj_weight': 1.0,
  86. 'loss_cls_weight': 1.0,
  87. 'loss_box_weight': 5.0,
  88. # training configuration
  89. 'trainer_type': 'yolo',
  90. },
  91. 'yolov7_x':{
  92. # input
  93. 'trans_type': 'yolov5_huge',
  94. 'multi_scale': [0.5, 1.25], # 320 -> 640
  95. # model
  96. 'backbone': 'elannet_huge',
  97. 'pretrained': True,
  98. 'bk_act': 'silu',
  99. 'bk_norm': 'BN',
  100. 'bk_dpw': False,
  101. 'stride': [8, 16, 32], # P3, P4, P5
  102. 'max_stride': 32,
  103. # neck
  104. 'neck': 'csp_sppf',
  105. 'expand_ratio': 0.5,
  106. 'pooling_size': 5,
  107. 'neck_act': 'silu',
  108. 'neck_norm': 'BN',
  109. 'neck_depthwise': False,
  110. # fpn
  111. 'fpn': 'yolov7_pafpn',
  112. 'fpn_act': 'silu',
  113. 'fpn_norm': 'BN',
  114. 'fpn_depthwise': False,
  115. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  116. 'depth': 2.0, # depth factor of each branch in ELANBlockFPN
  117. 'width': 1.25, # width factor of channel in FPN
  118. # head
  119. 'head': 'decoupled_head',
  120. 'head_act': 'silu',
  121. 'head_norm': 'BN',
  122. 'num_cls_head': 2,
  123. 'num_reg_head': 2,
  124. 'head_depthwise': False,
  125. # matcher
  126. 'matcher': {'center_sampling_radius': 2.5,
  127. 'topk_candicate': 10},
  128. # loss weight
  129. 'loss_obj_weight': 1.0,
  130. 'loss_cls_weight': 1.0,
  131. 'loss_box_weight': 5.0,
  132. # training configuration
  133. 'trainer_type': 'yolo',
  134. },
  135. }