engine.py 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # YOLOv8-style Trainer
  19. class Yolov8Trainer(object):
  20. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  21. # ------------------- basic parameters -------------------
  22. self.args = args
  23. self.epoch = 0
  24. self.best_map = -1.
  25. self.last_opt_step = 0
  26. self.no_aug_epoch = args.no_aug_epoch
  27. self.clip_grad = 10
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.second_stage = False
  33. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  34. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  35. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  36. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  37. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  38. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  39. self.data_cfg = data_cfg
  40. self.model_cfg = model_cfg
  41. self.trans_cfg = trans_cfg
  42. # ---------------------------- Build Transform ----------------------------
  43. self.train_transform, self.trans_cfg = build_transform(
  44. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  45. self.val_transform, _ = build_transform(
  46. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  47. # ---------------------------- Build Dataset & Dataloader ----------------------------
  48. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  49. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  50. # ---------------------------- Build Evaluator ----------------------------
  51. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  52. # ---------------------------- Build Grad. Scaler ----------------------------
  53. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  54. # ---------------------------- Build Optimizer ----------------------------
  55. accumulate = max(1, round(64 / self.args.batch_size))
  56. print('Grad Accumulate: {}'.format(accumulate))
  57. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  58. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  59. # ---------------------------- Build LR Scheduler ----------------------------
  60. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  61. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  62. if self.args.resume:
  63. self.lr_scheduler.step()
  64. # ---------------------------- Build Model-EMA ----------------------------
  65. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  66. print('Build ModelEMA ...')
  67. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  68. else:
  69. self.model_ema = None
  70. def check_second_stage(self):
  71. # set second stage
  72. print('============== Second stage of Training ==============')
  73. self.second_stage = True
  74. # close mosaic augmentation
  75. if self.train_loader.dataset.mosaic_prob > 0.:
  76. print(' - Close < Mosaic Augmentation > ...')
  77. self.train_loader.dataset.mosaic_prob = 0.
  78. self.heavy_eval = True
  79. # close mixup augmentation
  80. if self.train_loader.dataset.mixup_prob > 0.:
  81. print(' - Close < Mixup Augmentation > ...')
  82. self.train_loader.dataset.mixup_prob = 0.
  83. self.heavy_eval = True
  84. # close rotation augmentation
  85. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  86. print(' - Close < degress of rotation > ...')
  87. self.trans_cfg['degrees'] = 0.0
  88. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  89. print(' - Close < shear of rotation >...')
  90. self.trans_cfg['shear'] = 0.0
  91. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  92. print(' - Close < perspective of rotation > ...')
  93. self.trans_cfg['perspective'] = 0.0
  94. # close random affine
  95. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  96. print(' - Close < translate of affine > ...')
  97. self.trans_cfg['translate'] = 0.0
  98. if 'scale' in self.trans_cfg.keys():
  99. print(' - Close < scale of affine >...')
  100. self.trans_cfg['scale'] = [1.0, 1.0]
  101. # build a new transform for second stage
  102. print(' - Rebuild transforms ...')
  103. self.train_transform, self.trans_cfg = build_transform(
  104. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  105. self.train_loader.dataset.transform = self.train_transform
  106. def train(self, model):
  107. for epoch in range(self.start_epoch, self.args.max_epoch):
  108. if self.args.distributed:
  109. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  110. # check second stage
  111. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  112. self.check_second_stage()
  113. # train one epoch
  114. self.epoch = epoch
  115. self.train_one_epoch(model)
  116. # eval one epoch
  117. if self.heavy_eval:
  118. model_eval = model.module if self.args.distributed else model
  119. self.eval(model_eval)
  120. else:
  121. model_eval = model.module if self.args.distributed else model
  122. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  123. self.eval(model_eval)
  124. def eval(self, model):
  125. # chech model
  126. model_eval = model if self.model_ema is None else self.model_ema.ema
  127. # path to save model
  128. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  129. os.makedirs(path_to_save, exist_ok=True)
  130. if distributed_utils.is_main_process():
  131. # check evaluator
  132. if self.evaluator is None:
  133. print('No evaluator ... save model and go on training.')
  134. print('Saving state, epoch: {}'.format(self.epoch + 1))
  135. weight_name = '{}_no_eval.pth'.format(self.args.model)
  136. checkpoint_path = os.path.join(path_to_save, weight_name)
  137. torch.save({'model': model_eval.state_dict(),
  138. 'mAP': -1.,
  139. 'optimizer': self.optimizer.state_dict(),
  140. 'epoch': self.epoch,
  141. 'args': self.args},
  142. checkpoint_path)
  143. else:
  144. print('eval ...')
  145. # set eval mode
  146. model_eval.trainable = False
  147. model_eval.eval()
  148. # evaluate
  149. with torch.no_grad():
  150. self.evaluator.evaluate(model_eval)
  151. # save model
  152. cur_map = self.evaluator.map
  153. if cur_map > self.best_map:
  154. # update best-map
  155. self.best_map = cur_map
  156. # save model
  157. print('Saving state, epoch:', self.epoch + 1)
  158. weight_name = '{}_best.pth'.format(self.args.model)
  159. checkpoint_path = os.path.join(path_to_save, weight_name)
  160. torch.save({'model': model_eval.state_dict(),
  161. 'mAP': round(self.best_map*100, 1),
  162. 'optimizer': self.optimizer.state_dict(),
  163. 'epoch': self.epoch,
  164. 'args': self.args},
  165. checkpoint_path)
  166. # set train mode.
  167. model_eval.trainable = True
  168. model_eval.train()
  169. if self.args.distributed:
  170. # wait for all processes to synchronize
  171. dist.barrier()
  172. def train_one_epoch(self, model):
  173. # basic parameters
  174. epoch_size = len(self.train_loader)
  175. img_size = self.args.img_size
  176. t0 = time.time()
  177. nw = epoch_size * self.args.wp_epoch
  178. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  179. # train one epoch
  180. for iter_i, (images, targets) in enumerate(self.train_loader):
  181. ni = iter_i + self.epoch * epoch_size
  182. # Warmup
  183. if ni <= nw:
  184. xi = [0, nw] # x interp
  185. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  186. for j, x in enumerate(self.optimizer.param_groups):
  187. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  188. x['lr'] = np.interp(
  189. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  190. if 'momentum' in x:
  191. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  192. # to device
  193. images = images.to(self.device, non_blocking=True).float() / 255.
  194. # Multi scale
  195. if self.args.multi_scale:
  196. images, targets, img_size = self.rescale_image_targets(
  197. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  198. else:
  199. targets = self.refine_targets(targets, self.args.min_box_size)
  200. # visualize train targets
  201. if self.args.vis_tgt:
  202. vis_data(images*255, targets)
  203. # inference
  204. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  205. outputs = model(images)
  206. # loss
  207. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  208. losses = loss_dict['losses']
  209. losses *= images.shape[0] # loss * bs
  210. # reduce
  211. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  212. # gradient averaged between devices in DDP mode
  213. losses *= distributed_utils.get_world_size()
  214. # backward
  215. self.scaler.scale(losses).backward()
  216. # Optimize
  217. if ni - self.last_opt_step >= accumulate:
  218. if self.clip_grad > 0:
  219. # unscale gradients
  220. self.scaler.unscale_(self.optimizer)
  221. # clip gradients
  222. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  223. # optimizer.step
  224. self.scaler.step(self.optimizer)
  225. self.scaler.update()
  226. self.optimizer.zero_grad()
  227. # ema
  228. if self.model_ema is not None:
  229. self.model_ema.update(model)
  230. self.last_opt_step = ni
  231. # display
  232. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  233. t1 = time.time()
  234. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  235. # basic infor
  236. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  237. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  238. log += '[lr: {:.6f}]'.format(cur_lr[2])
  239. # loss infor
  240. for k in loss_dict_reduced.keys():
  241. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  242. # other infor
  243. log += '[time: {:.2f}]'.format(t1 - t0)
  244. log += '[size: {}]'.format(img_size)
  245. # print log infor
  246. print(log, flush=True)
  247. t0 = time.time()
  248. self.lr_scheduler.step()
  249. def refine_targets(self, targets, min_box_size):
  250. # rescale targets
  251. for tgt in targets:
  252. boxes = tgt["boxes"].clone()
  253. labels = tgt["labels"].clone()
  254. # refine tgt
  255. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  256. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  257. keep = (min_tgt_size >= min_box_size)
  258. tgt["boxes"] = boxes[keep]
  259. tgt["labels"] = labels[keep]
  260. return targets
  261. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  262. """
  263. Deployed for Multi scale trick.
  264. """
  265. if isinstance(stride, int):
  266. max_stride = stride
  267. elif isinstance(stride, list):
  268. max_stride = max(stride)
  269. # During training phase, the shape of input image is square.
  270. old_img_size = images.shape[-1]
  271. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  272. new_img_size = new_img_size // max_stride * max_stride # size
  273. if new_img_size / old_img_size != 1:
  274. # interpolate
  275. images = torch.nn.functional.interpolate(
  276. input=images,
  277. size=new_img_size,
  278. mode='bilinear',
  279. align_corners=False)
  280. # rescale targets
  281. for tgt in targets:
  282. boxes = tgt["boxes"].clone()
  283. labels = tgt["labels"].clone()
  284. boxes = torch.clamp(boxes, 0, old_img_size)
  285. # rescale box
  286. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  287. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  288. # refine tgt
  289. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  290. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  291. keep = (min_tgt_size >= min_box_size)
  292. tgt["boxes"] = boxes[keep]
  293. tgt["labels"] = labels[keep]
  294. return images, targets, new_img_size
  295. # YOLOX-syle Trainer
  296. class YoloxTrainer(object):
  297. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  298. # ------------------- basic parameters -------------------
  299. self.args = args
  300. self.epoch = 0
  301. self.best_map = -1.
  302. self.device = device
  303. self.criterion = criterion
  304. self.world_size = world_size
  305. self.grad_accumulate = args.grad_accumulate
  306. self.no_aug_epoch = args.no_aug_epoch
  307. self.heavy_eval = False
  308. self.second_stage = False
  309. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  310. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  311. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  312. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  313. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  314. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  315. self.data_cfg = data_cfg
  316. self.model_cfg = model_cfg
  317. self.trans_cfg = trans_cfg
  318. # ---------------------------- Build Transform ----------------------------
  319. self.train_transform, self.trans_cfg = build_transform(
  320. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  321. self.val_transform, _ = build_transform(
  322. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  323. # ---------------------------- Build Dataset & Dataloader ----------------------------
  324. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  325. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  326. # ---------------------------- Build Evaluator ----------------------------
  327. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  328. # ---------------------------- Build Grad. Scaler ----------------------------
  329. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  330. # ---------------------------- Build Optimizer ----------------------------
  331. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  332. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  333. # ---------------------------- Build LR Scheduler ----------------------------
  334. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  335. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  336. if self.args.resume:
  337. self.lr_scheduler.step()
  338. # ---------------------------- Build Model-EMA ----------------------------
  339. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  340. print('Build ModelEMA ...')
  341. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  342. else:
  343. self.model_ema = None
  344. def train(self, model):
  345. for epoch in range(self.start_epoch, self.args.max_epoch):
  346. if self.args.distributed:
  347. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  348. # check second stage
  349. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  350. self.check_second_stage()
  351. # train one epoch
  352. self.epoch = epoch
  353. self.train_one_epoch(model)
  354. # eval one epoch
  355. if self.heavy_eval:
  356. model_eval = model.module if self.args.distributed else model
  357. self.eval(model_eval)
  358. else:
  359. model_eval = model.module if self.args.distributed else model
  360. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  361. self.eval(model_eval)
  362. def eval(self, model):
  363. # chech model
  364. model_eval = model if self.model_ema is None else self.model_ema.ema
  365. # path to save model
  366. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  367. os.makedirs(path_to_save, exist_ok=True)
  368. if distributed_utils.is_main_process():
  369. # check evaluator
  370. if self.evaluator is None:
  371. print('No evaluator ... save model and go on training.')
  372. print('Saving state, epoch: {}'.format(self.epoch + 1))
  373. weight_name = '{}_no_eval.pth'.format(self.args.model)
  374. checkpoint_path = os.path.join(path_to_save, weight_name)
  375. torch.save({'model': model_eval.state_dict(),
  376. 'mAP': -1.,
  377. 'optimizer': self.optimizer.state_dict(),
  378. 'epoch': self.epoch,
  379. 'args': self.args},
  380. checkpoint_path)
  381. else:
  382. print('eval ...')
  383. # set eval mode
  384. model_eval.trainable = False
  385. model_eval.eval()
  386. # evaluate
  387. with torch.no_grad():
  388. self.evaluator.evaluate(model_eval)
  389. # save model
  390. cur_map = self.evaluator.map
  391. if cur_map > self.best_map:
  392. # update best-map
  393. self.best_map = cur_map
  394. # save model
  395. print('Saving state, epoch:', self.epoch + 1)
  396. weight_name = '{}_best.pth'.format(self.args.model)
  397. checkpoint_path = os.path.join(path_to_save, weight_name)
  398. torch.save({'model': model_eval.state_dict(),
  399. 'mAP': round(self.best_map*100, 1),
  400. 'optimizer': self.optimizer.state_dict(),
  401. 'epoch': self.epoch,
  402. 'args': self.args},
  403. checkpoint_path)
  404. # set train mode.
  405. model_eval.trainable = True
  406. model_eval.train()
  407. if self.args.distributed:
  408. # wait for all processes to synchronize
  409. dist.barrier()
  410. def train_one_epoch(self, model):
  411. # basic parameters
  412. epoch_size = len(self.train_loader)
  413. img_size = self.args.img_size
  414. t0 = time.time()
  415. nw = epoch_size * self.args.wp_epoch
  416. # Train one epoch
  417. for iter_i, (images, targets) in enumerate(self.train_loader):
  418. ni = iter_i + self.epoch * epoch_size
  419. # Warmup
  420. if ni <= nw:
  421. xi = [0, nw] # x interp
  422. for j, x in enumerate(self.optimizer.param_groups):
  423. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  424. x['lr'] = np.interp(
  425. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  426. if 'momentum' in x:
  427. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  428. # To device
  429. images = images.to(self.device, non_blocking=True).float() / 255.
  430. # Multi scale
  431. if self.args.multi_scale and ni % 10 == 0:
  432. images, targets, img_size = self.rescale_image_targets(
  433. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  434. else:
  435. targets = self.refine_targets(targets, self.args.min_box_size)
  436. # Visualize train targets
  437. if self.args.vis_tgt:
  438. vis_data(images*255, targets)
  439. # Inference
  440. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  441. outputs = model(images)
  442. # Compute loss
  443. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  444. losses = loss_dict['losses']
  445. # Grad Accu
  446. if self.grad_accumulate > 1:
  447. losses /= self.grad_accumulate
  448. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  449. # Backward
  450. self.scaler.scale(losses).backward()
  451. # Optimize
  452. if ni % self.grad_accumulate == 0:
  453. self.scaler.step(self.optimizer)
  454. self.scaler.update()
  455. self.optimizer.zero_grad()
  456. # ema
  457. if self.model_ema is not None:
  458. self.model_ema.update(model)
  459. # Logs
  460. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  461. t1 = time.time()
  462. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  463. # basic infor
  464. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  465. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  466. log += '[lr: {:.6f}]'.format(cur_lr[2])
  467. # loss infor
  468. for k in loss_dict_reduced.keys():
  469. loss_val = loss_dict_reduced[k]
  470. if k == 'losses':
  471. loss_val *= self.grad_accumulate
  472. log += '[{}: {:.2f}]'.format(k, loss_val)
  473. # other infor
  474. log += '[time: {:.2f}]'.format(t1 - t0)
  475. log += '[size: {}]'.format(img_size)
  476. # print log infor
  477. print(log, flush=True)
  478. t0 = time.time()
  479. # LR Schedule
  480. if not self.second_stage:
  481. self.lr_scheduler.step()
  482. def check_second_stage(self):
  483. # set second stage
  484. print('============== Second stage of Training ==============')
  485. self.second_stage = True
  486. # close mosaic augmentation
  487. if self.train_loader.dataset.mosaic_prob > 0.:
  488. print(' - Close < Mosaic Augmentation > ...')
  489. self.train_loader.dataset.mosaic_prob = 0.
  490. self.heavy_eval = True
  491. # close mixup augmentation
  492. if self.train_loader.dataset.mixup_prob > 0.:
  493. print(' - Close < Mixup Augmentation > ...')
  494. self.train_loader.dataset.mixup_prob = 0.
  495. self.heavy_eval = True
  496. # close rotation augmentation
  497. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  498. print(' - Close < degress of rotation > ...')
  499. self.trans_cfg['degrees'] = 0.0
  500. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  501. print(' - Close < shear of rotation >...')
  502. self.trans_cfg['shear'] = 0.0
  503. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  504. print(' - Close < perspective of rotation > ...')
  505. self.trans_cfg['perspective'] = 0.0
  506. # close random affine
  507. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  508. print(' - Close < translate of affine > ...')
  509. self.trans_cfg['translate'] = 0.0
  510. if 'scale' in self.trans_cfg.keys():
  511. print(' - Close < scale of affine >...')
  512. self.trans_cfg['scale'] = [1.0, 1.0]
  513. # build a new transform for second stage
  514. print(' - Rebuild transforms ...')
  515. self.train_transform, self.trans_cfg = build_transform(
  516. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  517. self.train_loader.dataset.transform = self.train_transform
  518. def refine_targets(self, targets, min_box_size):
  519. # rescale targets
  520. for tgt in targets:
  521. boxes = tgt["boxes"].clone()
  522. labels = tgt["labels"].clone()
  523. # refine tgt
  524. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  525. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  526. keep = (min_tgt_size >= min_box_size)
  527. tgt["boxes"] = boxes[keep]
  528. tgt["labels"] = labels[keep]
  529. return targets
  530. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  531. """
  532. Deployed for Multi scale trick.
  533. """
  534. if isinstance(stride, int):
  535. max_stride = stride
  536. elif isinstance(stride, list):
  537. max_stride = max(stride)
  538. # During training phase, the shape of input image is square.
  539. old_img_size = images.shape[-1]
  540. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  541. new_img_size = new_img_size // max_stride * max_stride # size
  542. if new_img_size / old_img_size != 1:
  543. # interpolate
  544. images = torch.nn.functional.interpolate(
  545. input=images,
  546. size=new_img_size,
  547. mode='bilinear',
  548. align_corners=False)
  549. # rescale targets
  550. for tgt in targets:
  551. boxes = tgt["boxes"].clone()
  552. labels = tgt["labels"].clone()
  553. boxes = torch.clamp(boxes, 0, old_img_size)
  554. # rescale box
  555. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  556. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  557. # refine tgt
  558. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  559. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  560. keep = (min_tgt_size >= min_box_size)
  561. tgt["boxes"] = boxes[keep]
  562. tgt["labels"] = labels[keep]
  563. return images, targets, new_img_size
  564. # RTMDet-syle Trainer
  565. class RTMTrainer(object):
  566. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  567. # ------------------- basic parameters -------------------
  568. self.args = args
  569. self.epoch = 0
  570. self.best_map = -1.
  571. self.device = device
  572. self.criterion = criterion
  573. self.world_size = world_size
  574. self.no_aug_epoch = args.no_aug_epoch
  575. self.clip_grad = 35
  576. self.heavy_eval = False
  577. self.second_stage = False
  578. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  579. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  580. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  581. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  582. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  583. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  584. self.data_cfg = data_cfg
  585. self.model_cfg = model_cfg
  586. self.trans_cfg = trans_cfg
  587. # ---------------------------- Build Transform ----------------------------
  588. self.train_transform, self.trans_cfg = build_transform(
  589. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  590. self.val_transform, _ = build_transform(
  591. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  592. # ---------------------------- Build Dataset & Dataloader ----------------------------
  593. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  594. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  595. # ---------------------------- Build Evaluator ----------------------------
  596. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  597. # ---------------------------- Build Grad. Scaler ----------------------------
  598. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  599. # ---------------------------- Build Optimizer ----------------------------
  600. self.optimizer_dict['lr0'] *= self.args.batch_size / 64
  601. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  602. # ---------------------------- Build LR Scheduler ----------------------------
  603. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  604. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  605. if self.args.resume:
  606. self.lr_scheduler.step()
  607. # ---------------------------- Build Model-EMA ----------------------------
  608. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  609. print('Build ModelEMA ...')
  610. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  611. else:
  612. self.model_ema = None
  613. def train(self, model):
  614. for epoch in range(self.start_epoch, self.args.max_epoch):
  615. if self.args.distributed:
  616. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  617. # check second stage
  618. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  619. self.check_second_stage()
  620. # train one epoch
  621. self.epoch = epoch
  622. self.train_one_epoch(model)
  623. # eval one epoch
  624. if self.heavy_eval:
  625. model_eval = model.module if self.args.distributed else model
  626. self.eval(model_eval)
  627. else:
  628. model_eval = model.module if self.args.distributed else model
  629. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  630. self.eval(model_eval)
  631. def eval(self, model):
  632. # chech model
  633. model_eval = model if self.model_ema is None else self.model_ema.ema
  634. # path to save model
  635. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  636. os.makedirs(path_to_save, exist_ok=True)
  637. if distributed_utils.is_main_process():
  638. # check evaluator
  639. if self.evaluator is None:
  640. print('No evaluator ... save model and go on training.')
  641. print('Saving state, epoch: {}'.format(self.epoch + 1))
  642. weight_name = '{}_no_eval.pth'.format(self.args.model)
  643. checkpoint_path = os.path.join(path_to_save, weight_name)
  644. torch.save({'model': model_eval.state_dict(),
  645. 'mAP': -1.,
  646. 'optimizer': self.optimizer.state_dict(),
  647. 'epoch': self.epoch,
  648. 'args': self.args},
  649. checkpoint_path)
  650. else:
  651. print('eval ...')
  652. # set eval mode
  653. model_eval.trainable = False
  654. model_eval.eval()
  655. # evaluate
  656. with torch.no_grad():
  657. self.evaluator.evaluate(model_eval)
  658. # save model
  659. cur_map = self.evaluator.map
  660. if cur_map > self.best_map:
  661. # update best-map
  662. self.best_map = cur_map
  663. # save model
  664. print('Saving state, epoch:', self.epoch + 1)
  665. weight_name = '{}_best.pth'.format(self.args.model)
  666. checkpoint_path = os.path.join(path_to_save, weight_name)
  667. torch.save({'model': model_eval.state_dict(),
  668. 'mAP': round(self.best_map*100, 1),
  669. 'optimizer': self.optimizer.state_dict(),
  670. 'epoch': self.epoch,
  671. 'args': self.args},
  672. checkpoint_path)
  673. # set train mode.
  674. model_eval.trainable = True
  675. model_eval.train()
  676. if self.args.distributed:
  677. # wait for all processes to synchronize
  678. dist.barrier()
  679. def train_one_epoch(self, model):
  680. # basic parameters
  681. epoch_size = len(self.train_loader)
  682. img_size = self.args.img_size
  683. t0 = time.time()
  684. nw = epoch_size * self.args.wp_epoch
  685. # Train one epoch
  686. for iter_i, (images, targets) in enumerate(self.train_loader):
  687. ni = iter_i + self.epoch * epoch_size
  688. # Warmup
  689. if ni <= nw:
  690. xi = [0, nw] # x interp
  691. for j, x in enumerate(self.optimizer.param_groups):
  692. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  693. x['lr'] = np.interp(
  694. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  695. if 'momentum' in x:
  696. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  697. # To device
  698. images = images.to(self.device, non_blocking=True).float() / 255.
  699. # Multi scale
  700. if self.args.multi_scale:
  701. images, targets, img_size = self.rescale_image_targets(
  702. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  703. else:
  704. targets = self.refine_targets(targets, self.args.min_box_size)
  705. # Visualize train targets
  706. if self.args.vis_tgt:
  707. vis_data(images*255, targets)
  708. # Inference
  709. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  710. outputs = model(images)
  711. # Compute loss
  712. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  713. losses = loss_dict['losses']
  714. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  715. # Backward
  716. self.scaler.scale(losses).backward()
  717. # Optimize
  718. if self.clip_grad > 0:
  719. # unscale gradients
  720. self.scaler.unscale_(self.optimizer)
  721. # clip gradients
  722. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  723. # optimizer.step
  724. self.scaler.step(self.optimizer)
  725. self.scaler.update()
  726. self.optimizer.zero_grad()
  727. # ema
  728. if self.model_ema is not None:
  729. self.model_ema.update(model)
  730. # Logs
  731. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  732. t1 = time.time()
  733. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  734. # basic infor
  735. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  736. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  737. log += '[lr: {:.6f}]'.format(cur_lr[2])
  738. # loss infor
  739. for k in loss_dict_reduced.keys():
  740. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  741. # other infor
  742. log += '[time: {:.2f}]'.format(t1 - t0)
  743. log += '[size: {}]'.format(img_size)
  744. # print log infor
  745. print(log, flush=True)
  746. t0 = time.time()
  747. # LR Schedule
  748. if not self.second_stage:
  749. self.lr_scheduler.step()
  750. def check_second_stage(self):
  751. # set second stage
  752. print('============== Second stage of Training ==============')
  753. self.second_stage = True
  754. # close mosaic augmentation
  755. if self.train_loader.dataset.mosaic_prob > 0.:
  756. print(' - Close < Mosaic Augmentation > ...')
  757. self.train_loader.dataset.mosaic_prob = 0.
  758. self.heavy_eval = True
  759. # close mixup augmentation
  760. if self.train_loader.dataset.mixup_prob > 0.:
  761. print(' - Close < Mixup Augmentation > ...')
  762. self.train_loader.dataset.mixup_prob = 0.
  763. self.heavy_eval = True
  764. # close rotation augmentation
  765. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  766. print(' - Close < degress of rotation > ...')
  767. self.trans_cfg['degrees'] = 0.0
  768. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  769. print(' - Close < shear of rotation >...')
  770. self.trans_cfg['shear'] = 0.0
  771. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  772. print(' - Close < perspective of rotation > ...')
  773. self.trans_cfg['perspective'] = 0.0
  774. # build a new transform for second stage
  775. print(' - Rebuild transforms ...')
  776. self.train_transform, self.trans_cfg = build_transform(
  777. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  778. self.train_loader.dataset.transform = self.train_transform
  779. def refine_targets(self, targets, min_box_size):
  780. # rescale targets
  781. for tgt in targets:
  782. boxes = tgt["boxes"].clone()
  783. labels = tgt["labels"].clone()
  784. # refine tgt
  785. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  786. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  787. keep = (min_tgt_size >= min_box_size)
  788. tgt["boxes"] = boxes[keep]
  789. tgt["labels"] = labels[keep]
  790. return targets
  791. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  792. """
  793. Deployed for Multi scale trick.
  794. """
  795. if isinstance(stride, int):
  796. max_stride = stride
  797. elif isinstance(stride, list):
  798. max_stride = max(stride)
  799. # During training phase, the shape of input image is square.
  800. old_img_size = images.shape[-1]
  801. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  802. new_img_size = new_img_size // max_stride * max_stride # size
  803. if new_img_size / old_img_size != 1:
  804. # interpolate
  805. images = torch.nn.functional.interpolate(
  806. input=images,
  807. size=new_img_size,
  808. mode='bilinear',
  809. align_corners=False)
  810. # rescale targets
  811. for tgt in targets:
  812. boxes = tgt["boxes"].clone()
  813. labels = tgt["labels"].clone()
  814. boxes = torch.clamp(boxes, 0, old_img_size)
  815. # rescale box
  816. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  817. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  818. # refine tgt
  819. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  820. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  821. keep = (min_tgt_size >= min_box_size)
  822. tgt["boxes"] = boxes[keep]
  823. tgt["labels"] = labels[keep]
  824. return images, targets, new_img_size
  825. # Trainer for DETR
  826. class DetrTrainer(object):
  827. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  828. # ------------------- basic parameters -------------------
  829. self.args = args
  830. self.epoch = 0
  831. self.best_map = -1.
  832. self.last_opt_step = 0
  833. self.no_aug_epoch = args.no_aug_epoch
  834. self.clip_grad = -1
  835. self.device = device
  836. self.criterion = criterion
  837. self.world_size = world_size
  838. self.second_stage = False
  839. self.heavy_eval = False
  840. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_raio': 0.1}
  841. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  842. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  843. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  844. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  845. self.data_cfg = data_cfg
  846. self.model_cfg = model_cfg
  847. self.trans_cfg = trans_cfg
  848. # ---------------------------- Build Transform ----------------------------
  849. self.train_transform, self.trans_cfg = build_transform(
  850. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  851. self.val_transform, _ = build_transform(
  852. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  853. # ---------------------------- Build Dataset & Dataloader ----------------------------
  854. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  855. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  856. # ---------------------------- Build Evaluator ----------------------------
  857. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  858. # ---------------------------- Build Grad. Scaler ----------------------------
  859. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  860. # ---------------------------- Build Optimizer ----------------------------
  861. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  862. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  863. # ---------------------------- Build LR Scheduler ----------------------------
  864. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  865. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  866. if self.args.resume:
  867. self.lr_scheduler.step()
  868. # ---------------------------- Build Model-EMA ----------------------------
  869. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  870. print('Build ModelEMA ...')
  871. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  872. else:
  873. self.model_ema = None
  874. def check_second_stage(self):
  875. # set second stage
  876. print('============== Second stage of Training ==============')
  877. self.second_stage = True
  878. # close mosaic augmentation
  879. if self.train_loader.dataset.mosaic_prob > 0.:
  880. print(' - Close < Mosaic Augmentation > ...')
  881. self.train_loader.dataset.mosaic_prob = 0.
  882. self.heavy_eval = True
  883. # close mixup augmentation
  884. if self.train_loader.dataset.mixup_prob > 0.:
  885. print(' - Close < Mixup Augmentation > ...')
  886. self.train_loader.dataset.mixup_prob = 0.
  887. self.heavy_eval = True
  888. # close rotation augmentation
  889. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  890. print(' - Close < degress of rotation > ...')
  891. self.trans_cfg['degrees'] = 0.0
  892. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  893. print(' - Close < shear of rotation >...')
  894. self.trans_cfg['shear'] = 0.0
  895. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  896. print(' - Close < perspective of rotation > ...')
  897. self.trans_cfg['perspective'] = 0.0
  898. # build a new transform for second stage
  899. print(' - Rebuild transforms ...')
  900. self.train_transform, self.trans_cfg = build_transform(
  901. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  902. self.train_loader.dataset.transform = self.train_transform
  903. def train(self, model):
  904. for epoch in range(self.start_epoch, self.args.max_epoch):
  905. if self.args.distributed:
  906. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  907. # check second stage
  908. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  909. self.check_second_stage()
  910. # train one epoch
  911. self.epoch = epoch
  912. self.train_one_epoch(model)
  913. # eval one epoch
  914. if self.heavy_eval:
  915. model_eval = model.module if self.args.distributed else model
  916. self.eval(model_eval)
  917. else:
  918. model_eval = model.module if self.args.distributed else model
  919. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  920. self.eval(model_eval)
  921. def eval(self, model):
  922. # chech model
  923. model_eval = model if self.model_ema is None else self.model_ema.ema
  924. # path to save model
  925. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  926. os.makedirs(path_to_save, exist_ok=True)
  927. if distributed_utils.is_main_process():
  928. # check evaluator
  929. if self.evaluator is None:
  930. print('No evaluator ... save model and go on training.')
  931. print('Saving state, epoch: {}'.format(self.epoch + 1))
  932. weight_name = '{}_no_eval.pth'.format(self.args.model)
  933. checkpoint_path = os.path.join(path_to_save, weight_name)
  934. torch.save({'model': model_eval.state_dict(),
  935. 'mAP': -1.,
  936. 'optimizer': self.optimizer.state_dict(),
  937. 'epoch': self.epoch,
  938. 'args': self.args},
  939. checkpoint_path)
  940. else:
  941. print('eval ...')
  942. # set eval mode
  943. model_eval.trainable = False
  944. model_eval.eval()
  945. # evaluate
  946. with torch.no_grad():
  947. self.evaluator.evaluate(model_eval)
  948. # save model
  949. cur_map = self.evaluator.map
  950. if cur_map > self.best_map:
  951. # update best-map
  952. self.best_map = cur_map
  953. # save model
  954. print('Saving state, epoch:', self.epoch + 1)
  955. weight_name = '{}_best.pth'.format(self.args.model)
  956. checkpoint_path = os.path.join(path_to_save, weight_name)
  957. torch.save({'model': model_eval.state_dict(),
  958. 'mAP': round(self.best_map*100, 1),
  959. 'optimizer': self.optimizer.state_dict(),
  960. 'epoch': self.epoch,
  961. 'args': self.args},
  962. checkpoint_path)
  963. # set train mode.
  964. model_eval.trainable = True
  965. model_eval.train()
  966. if self.args.distributed:
  967. # wait for all processes to synchronize
  968. dist.barrier()
  969. def train_one_epoch(self, model):
  970. # basic parameters
  971. epoch_size = len(self.train_loader)
  972. img_size = self.args.img_size
  973. t0 = time.time()
  974. nw = epoch_size * self.args.wp_epoch
  975. # train one epoch
  976. for iter_i, (images, targets) in enumerate(self.train_loader):
  977. ni = iter_i + self.epoch * epoch_size
  978. # Warmup
  979. if ni <= nw:
  980. xi = [0, nw] # x interp
  981. for j, x in enumerate(self.optimizer.param_groups):
  982. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  983. x['lr'] = np.interp(
  984. ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  985. if 'momentum' in x:
  986. x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
  987. # To device
  988. images = images.to(self.device, non_blocking=True).float() / 255.
  989. # Multi scale
  990. if self.args.multi_scale:
  991. images, targets, img_size = self.rescale_image_targets(
  992. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  993. else:
  994. targets = self.refine_targets(targets, self.args.min_box_size, img_size)
  995. # Visualize targets
  996. if self.args.vis_tgt:
  997. vis_data(images*255, targets)
  998. # Inference
  999. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1000. outputs = model(images)
  1001. # Compute loss
  1002. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  1003. losses = loss_dict['losses']
  1004. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1005. # Backward
  1006. self.scaler.scale(losses).backward()
  1007. # Optimize
  1008. if self.clip_grad > 0:
  1009. # unscale gradients
  1010. self.scaler.unscale_(self.optimizer)
  1011. # clip gradients
  1012. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1013. self.scaler.step(self.optimizer)
  1014. self.scaler.update()
  1015. self.optimizer.zero_grad()
  1016. # Model EMA
  1017. if self.model_ema is not None:
  1018. self.model_ema.update(model)
  1019. self.last_opt_step = ni
  1020. # Log
  1021. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  1022. t1 = time.time()
  1023. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  1024. # basic infor
  1025. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  1026. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1027. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1028. # loss infor
  1029. for k in loss_dict_reduced.keys():
  1030. if self.args.vis_aux_loss:
  1031. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1032. else:
  1033. if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
  1034. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1035. # other infor
  1036. log += '[time: {:.2f}]'.format(t1 - t0)
  1037. log += '[size: {}]'.format(img_size)
  1038. # print log infor
  1039. print(log, flush=True)
  1040. t0 = time.time()
  1041. # LR Scheduler
  1042. self.lr_scheduler.step()
  1043. def refine_targets(self, targets, min_box_size, img_size):
  1044. # rescale targets
  1045. for tgt in targets:
  1046. boxes = tgt["boxes"]
  1047. labels = tgt["labels"]
  1048. # refine tgt
  1049. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1050. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1051. keep = (min_tgt_size >= min_box_size)
  1052. # xyxy -> cxcywh
  1053. new_boxes = torch.zeros_like(boxes)
  1054. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1055. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1056. # normalize
  1057. new_boxes /= img_size
  1058. del boxes
  1059. tgt["boxes"] = new_boxes[keep]
  1060. tgt["labels"] = labels[keep]
  1061. return targets
  1062. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1063. """
  1064. Deployed for Multi scale trick.
  1065. """
  1066. if isinstance(stride, int):
  1067. max_stride = stride
  1068. elif isinstance(stride, list):
  1069. max_stride = max(stride)
  1070. # During training phase, the shape of input image is square.
  1071. old_img_size = images.shape[-1]
  1072. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1073. new_img_size = new_img_size // max_stride * max_stride # size
  1074. if new_img_size / old_img_size != 1:
  1075. # interpolate
  1076. images = torch.nn.functional.interpolate(
  1077. input=images,
  1078. size=new_img_size,
  1079. mode='bilinear',
  1080. align_corners=False)
  1081. # rescale targets
  1082. for tgt in targets:
  1083. boxes = tgt["boxes"].clone()
  1084. labels = tgt["labels"].clone()
  1085. boxes = torch.clamp(boxes, 0, old_img_size)
  1086. # rescale box
  1087. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1088. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1089. # refine tgt
  1090. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1091. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1092. keep = (min_tgt_size >= min_box_size)
  1093. # xyxy -> cxcywh
  1094. new_boxes = torch.zeros_like(boxes)
  1095. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1096. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1097. # normalize
  1098. new_boxes /= new_img_size
  1099. del boxes
  1100. tgt["boxes"] = new_boxes[keep]
  1101. tgt["labels"] = labels[keep]
  1102. return images, targets, new_img_size
  1103. # Build Trainer
  1104. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1105. if model_cfg['trainer_type'] == 'yolov8':
  1106. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1107. elif model_cfg['trainer_type'] == 'yolox':
  1108. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1109. elif model_cfg['trainer_type'] == 'rtmdet':
  1110. return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1111. elif model_cfg['trainer_type'] == 'detr':
  1112. return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1113. else:
  1114. raise NotImplementedError