yolox_config.py 1.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # YOLOx Config
  2. yolox_cfg = {
  3. # input
  4. 'trans_type': 'yolox',
  5. # model
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'stride': [8, 16, 32], # P3, P4, P5
  12. 'width': 1.0,
  13. 'depth': 1.0,
  14. # fpn
  15. 'fpn': 'yolo_pafpn',
  16. 'fpn_act': 'silu',
  17. 'fpn_norm': 'BN',
  18. 'fpn_depthwise': False,
  19. # head
  20. 'head': 'decoupled_head',
  21. 'head_act': 'silu',
  22. 'head_norm': 'BN',
  23. 'num_cls_head': 2,
  24. 'num_reg_head': 2,
  25. 'head_depthwise': False,
  26. # matcher
  27. 'matcher': {'center_sampling_radius': 2.5,
  28. 'topk_candicate': 10},
  29. # loss weight
  30. 'loss_obj_weight': 1.0,
  31. 'loss_cls_weight': 1.0,
  32. 'loss_box_weight': 5.0,
  33. # training configuration
  34. 'no_aug_epoch': 20,
  35. # optimizer
  36. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  37. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  38. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  39. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  40. # model EMA
  41. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  42. 'ema_tau': 2000,
  43. # lr schedule
  44. 'scheduler': 'linear',
  45. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  46. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  47. 'warmup_momentum': 0.8,
  48. 'warmup_bias_lr': 0.1,
  49. }