yolov4_config.py 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # YOLOv4 Config
  2. yolov4_cfg = {
  3. # input
  4. 'trans_type': 'yolov5',
  5. # model
  6. 'backbone': 'cspdarknet53',
  7. 'pretrained': True,
  8. 'stride': [8, 16, 32], # P3, P4, P5
  9. 'width': 1.0,
  10. 'depth': 1.0,
  11. # neck
  12. 'neck': 'csp_sppf',
  13. 'expand_ratio': 0.5,
  14. 'pooling_size': 5,
  15. 'neck_act': 'silu',
  16. 'neck_norm': 'BN',
  17. 'neck_depthwise': False,
  18. # fpn
  19. 'fpn': 'yolo_pafpn',
  20. 'fpn_act': 'silu',
  21. 'fpn_norm': 'BN',
  22. 'fpn_depthwise': False,
  23. # head
  24. 'head': 'decoupled_head',
  25. 'head_act': 'silu',
  26. 'head_norm': 'BN',
  27. 'num_cls_head': 2,
  28. 'num_reg_head': 2,
  29. 'head_depthwise': False,
  30. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  31. [30, 61], [62, 45], [59, 119], # P4
  32. [116, 90], [156, 198], [373, 326]], # P5
  33. # matcher
  34. 'iou_thresh': 0.5,
  35. # loss weight
  36. 'loss_obj_weight': 1.0,
  37. 'loss_cls_weight': 1.0,
  38. 'loss_box_weight': 5.0,
  39. # training configuration
  40. 'no_aug_epoch': 20,
  41. # optimizer
  42. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  43. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  44. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  45. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  46. # model EMA
  47. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  48. 'ema_tau': 2000,
  49. # lr schedule
  50. 'scheduler': 'linear',
  51. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  52. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  53. 'warmup_momentum': 0.8,
  54. 'warmup_bias_lr': 0.1,
  55. }