yolox2_pred.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. # Single-level pred layer
  5. class SingleLevelPredLayer(nn.Module):
  6. def __init__(self,
  7. cls_dim :int = 256,
  8. reg_dim :int = 256,
  9. stride :int = 32,
  10. num_classes :int = 80,
  11. num_coords :int = 4):
  12. super().__init__()
  13. # --------- Basic Parameters ----------
  14. self.stride = stride
  15. self.cls_dim = cls_dim
  16. self.reg_dim = reg_dim
  17. self.num_classes = num_classes
  18. self.num_coords = num_coords
  19. # --------- Network Parameters ----------
  20. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  21. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  22. self.init_bias()
  23. def init_bias(self):
  24. # cls pred bias
  25. b = self.cls_pred.bias.view(1, -1)
  26. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  27. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  28. # reg pred bias
  29. b = self.reg_pred.bias.view(-1, )
  30. b.data.fill_(1.0)
  31. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  32. def generate_anchors(self, fmp_size):
  33. """
  34. fmp_size: (List) [H, W]
  35. """
  36. # generate grid cells
  37. fmp_h, fmp_w = fmp_size
  38. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  39. # [H, W, 2] -> [HW, 2]
  40. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  41. anchors += 0.5 # add center offset
  42. anchors *= self.stride
  43. return anchors
  44. def forward(self, cls_feat, reg_feat):
  45. # pred
  46. cls_pred = self.cls_pred(cls_feat)
  47. reg_pred = self.reg_pred(reg_feat)
  48. # generate anchor boxes: [M, 4]
  49. B, _, H, W = cls_pred.size()
  50. fmp_size = [H, W]
  51. anchors = self.generate_anchors(fmp_size)
  52. anchors = anchors.to(cls_pred.device)
  53. # stride tensor: [M, 1]
  54. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  55. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  56. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  57. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  58. # output dict
  59. outputs = {"pred_cls": cls_pred, # (Tensor) [B, M, C]
  60. "pred_reg": reg_pred, # (Tensor) [B, M, 4]
  61. "anchors": anchors, # (Tensor) [M, 2]
  62. "stride": self.stride, # (Int)
  63. "stride_tensors": stride_tensor # List(Tensor) [M, 1]
  64. }
  65. return outputs
  66. # Multi-level pred layer
  67. class MultiLevelPredLayer(nn.Module):
  68. def __init__(self,
  69. cls_dim,
  70. reg_dim,
  71. strides,
  72. num_classes :int = 80,
  73. num_coords :int = 4,
  74. num_levels :int = 3):
  75. super().__init__()
  76. # --------- Basic Parameters ----------
  77. self.cls_dim = cls_dim
  78. self.reg_dim = reg_dim
  79. self.strides = strides
  80. self.num_classes = num_classes
  81. self.num_coords = num_coords
  82. self.num_levels = num_levels
  83. # ----------- Network Parameters -----------
  84. ## multi-level pred layers
  85. self.multi_level_preds = nn.ModuleList(
  86. [SingleLevelPredLayer(cls_dim = cls_dim,
  87. reg_dim = reg_dim,
  88. stride = strides[level],
  89. num_classes = num_classes,
  90. num_coords = num_coords)
  91. for level in range(num_levels)
  92. ])
  93. def forward(self, cls_feats, reg_feats):
  94. all_anchors = []
  95. all_strides = []
  96. all_cls_preds = []
  97. all_box_preds = []
  98. all_reg_preds = []
  99. for level in range(self.num_levels):
  100. # ---------------- Single level prediction ----------------
  101. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  102. # ---------------- Decode bbox ----------------
  103. ctr_pred = outputs["pred_reg"][..., :2] * self.strides[level] + outputs["anchors"][..., :2]
  104. wh_pred = torch.exp(outputs["pred_reg"][..., 2:]) * self.strides[level]
  105. pred_x1y1 = ctr_pred - wh_pred * 0.5
  106. pred_x2y2 = ctr_pred + wh_pred * 0.5
  107. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  108. # collect results
  109. all_cls_preds.append(outputs["pred_cls"])
  110. all_box_preds.append(box_pred)
  111. all_reg_preds.append(outputs["pred_reg"])
  112. all_anchors.append(outputs["anchors"])
  113. all_strides.append(outputs["stride_tensors"])
  114. # output dict
  115. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  116. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  117. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  118. "anchors": all_anchors, # List(Tensor) [M, 2]
  119. "strides": self.strides, # List(Int) [8, 16, 32]
  120. "stride_tensors": all_strides # List(Tensor) [M, 1]
  121. }
  122. return outputs
  123. # build detection head
  124. def build_pred_layer(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  125. pred_layers = MultiLevelPredLayer(cls_dim = cls_dim,
  126. reg_dim = reg_dim,
  127. strides = strides,
  128. num_classes = num_classes,
  129. num_coords = num_coords,
  130. num_levels = num_levels)
  131. return pred_layers