yolov8.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolov8_backbone import build_backbone
  6. from .yolov8_neck import build_neck
  7. from .yolov8_pafpn import build_fpn
  8. from .yolov8_head import build_det_head
  9. from .yolov8_pred import build_pred_layer
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms, non_max_suppression
  12. # YOLOv8
  13. class YOLOv8(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. device,
  17. num_classes = 20,
  18. conf_thresh = 0.01,
  19. nms_thresh = 0.5,
  20. topk = 1000,
  21. trainable = False,
  22. deploy = False,
  23. nms_class_agnostic = False):
  24. super(YOLOv8, self).__init__()
  25. # ---------------------- Basic Parameters ----------------------
  26. self.cfg = cfg
  27. self.device = device
  28. self.strides = cfg['stride']
  29. self.reg_max = cfg['reg_max']
  30. self.num_classes = num_classes
  31. self.trainable = trainable
  32. self.conf_thresh = conf_thresh
  33. self.nms_thresh = nms_thresh
  34. self.num_levels = len(self.strides)
  35. self.num_classes = num_classes
  36. self.topk = topk
  37. self.deploy = deploy
  38. self.nms_class_agnostic = nms_class_agnostic
  39. # ---------------------- Network Parameters ----------------------
  40. ## ----------- Backbone -----------
  41. self.backbone, feat_dims = build_backbone(cfg)
  42. ## ----------- Neck: SPP -----------
  43. self.neck = build_neck(cfg, feat_dims[-1], feat_dims[-1])
  44. feat_dims[-1] = self.neck.out_dim
  45. ## ----------- Neck: FPN -----------
  46. self.fpn = build_fpn(cfg, feat_dims)
  47. self.fpn_dims = self.fpn.out_dim
  48. ## ----------- Heads -----------
  49. self.det_heads = build_det_head(cfg, self.fpn_dims, self.num_levels, num_classes, self.reg_max)
  50. ## ----------- Preds -----------
  51. self.pred_layers = build_pred_layer(cls_dim = self.det_heads.cls_head_dim,
  52. reg_dim = self.det_heads.reg_head_dim,
  53. strides = self.strides,
  54. num_classes = num_classes,
  55. num_coords = 4,
  56. num_levels = self.num_levels,
  57. reg_max = self.reg_max)
  58. ## post-process
  59. def post_process(self, cls_preds, box_preds):
  60. """
  61. Input:
  62. cls_preds: List(Tensor) [[H x W, C], ...]
  63. box_preds: List(Tensor) [[H x W, 4], ...]
  64. """
  65. all_scores = []
  66. all_labels = []
  67. all_bboxes = []
  68. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  69. cls_pred_i = cls_pred_i[0]
  70. box_pred_i = box_pred_i[0]
  71. # (H x W x C,)
  72. scores_i = cls_pred_i.sigmoid().flatten()
  73. # Keep top k top scoring indices only.
  74. num_topk = min(self.topk, box_pred_i.size(0))
  75. # torch.sort is actually faster than .topk (at least on GPUs)
  76. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  77. topk_scores = predicted_prob[:num_topk]
  78. topk_idxs = topk_idxs[:num_topk]
  79. # filter out the proposals with low confidence score
  80. keep_idxs = topk_scores > self.conf_thresh
  81. scores = topk_scores[keep_idxs]
  82. topk_idxs = topk_idxs[keep_idxs]
  83. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  84. labels = topk_idxs % self.num_classes
  85. bboxes = box_pred_i[anchor_idxs]
  86. all_scores.append(scores)
  87. all_labels.append(labels)
  88. all_bboxes.append(bboxes)
  89. scores = torch.cat(all_scores)
  90. labels = torch.cat(all_labels)
  91. bboxes = torch.cat(all_bboxes)
  92. # to cpu & numpy
  93. scores = scores.cpu().numpy()
  94. labels = labels.cpu().numpy()
  95. bboxes = bboxes.cpu().numpy()
  96. # nms
  97. scores, labels, bboxes = multiclass_nms(
  98. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  99. return bboxes, scores, labels
  100. # ---------------------- Main Process for Inference ----------------------
  101. @torch.no_grad()
  102. def inference_single_image(self, x):
  103. # ---------------- Backbone ----------------
  104. pyramid_feats = self.backbone(x)
  105. # ---------------- Neck: SPP ----------------
  106. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  107. # ---------------- Neck: PaFPN ----------------
  108. pyramid_feats = self.fpn(pyramid_feats)
  109. # ---------------- Heads ----------------
  110. cls_feats, reg_feats = self.det_heads(pyramid_feats)
  111. # ---------------- Preds ----------------
  112. outputs = self.pred_layers(cls_feats, reg_feats)
  113. all_cls_preds = outputs['pred_cls']
  114. all_box_preds = outputs['pred_box']
  115. if self.deploy:
  116. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  117. box_preds = torch.cat(all_box_preds, dim=1)[0]
  118. scores = cls_preds.sigmoid()
  119. bboxes = box_preds
  120. # [n_anchors_all, 4 + C]
  121. outputs = torch.cat([bboxes, scores], dim=-1)
  122. return outputs
  123. else:
  124. cls_preds = torch.sigmoid(torch.cat(all_cls_preds, dim=1))[0]
  125. box_preds = torch.cat(all_box_preds, dim=1)[0]
  126. predictions = torch.cat([box_preds, cls_preds], dim=-1)
  127. outputs = non_max_suppression(predictions,
  128. self.conf_thresh,
  129. self.nms_thresh,
  130. agnostic=self.nms_class_agnostic,
  131. max_det=300,
  132. classes=None)
  133. bboxes, scores, labels = outputs[:, :4], outputs[:, 4], outputs[:, 5]
  134. # post process
  135. # bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  136. return bboxes, scores, labels
  137. def forward(self, x):
  138. if not self.trainable:
  139. return self.inference_single_image(x)
  140. else:
  141. # ---------------- Backbone ----------------
  142. pyramid_feats = self.backbone(x)
  143. # ---------------- Neck: SPP ----------------
  144. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  145. # ---------------- Neck: PaFPN ----------------
  146. pyramid_feats = self.fpn(pyramid_feats)
  147. # ---------------- Heads ----------------
  148. cls_feats, reg_feats = self.det_heads(pyramid_feats)
  149. # ---------------- Preds ----------------
  150. outputs = self.pred_layers(cls_feats, reg_feats)
  151. return outputs