| Model |
Backbone |
Batch |
Scale |
APval 0.5:0.95
| APval 0.5
| FLOPs (G)
| Params (M)
| Weight |
| YOLOv5-N |
CSPDarkNet-N |
1xb16 |
640 |
29.8 |
47.1 |
7.7 |
2.4 |
ckpt |
| YOLOv5-S |
CSPDarkNet-S |
1xb16 |
640 |
37.8 |
56.5 |
27.1 |
9.0 |
ckpt |
| YOLOv5-M |
CSPDarkNet-M |
1xb16 |
640 |
43.5 |
62.5 |
74.3 |
25.4 |
ckpt |
| YOLOv5-L |
CSPDarkNet-L |
1xb16 |
640 |
46.7 |
65.5 |
155.6 |
54.2 |
ckpt |
- For training, we train YOLOv5 series with 300 epochs on COCO.
- For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of YOLOv5.
- For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
- For learning rate scheduler, we use linear decay scheduler.
- For YOLOv5's structure, we use decoupled head, following the setting of YOLOX.
- For YOLOv5-M and YOLOv5-L, increasing the batch size may improve performance. Due to my computing resources, I can only set the batch size to 16.
Train YOLOv5
Single GPU
Taking training YOLOv5-S on COCO as the example,
python train.py --cuda -d coco --root path/to/coco -m yolov5_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale
Multi GPU
Taking training YOLOv5 on COCO as the example,
python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov5_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/
Test YOLOv5
Taking testing YOLOv5 on COCO-val as the example,
python test.py --cuda -d coco --root path/to/coco -m yolov5_s --weight path/to/yolov5.pth -size 640 -vt 0.4 --show
Evaluate YOLOv5
Taking evaluating YOLOv5 on COCO-val as the example,
python eval.py --cuda -d coco-val --root path/to/coco -m yolov5_s --weight path/to/yolov5.pth
Demo
Detect with Image
python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov5_s --weight path/to/weight -size 640 -vt 0.4 --show
Detect with Video
python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov5_s --weight path/to/weight -size 640 -vt 0.4 --show --gif
Detect with Camera
python demo.py --mode camera --cuda -m yolov5_s --weight path/to/weight -size 640 -vt 0.4 --show --gif