yolov5_plus_config.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. # yolov8 config
  2. yolov5_plus_cfg = {
  3. 'yolov5_plus_n':{
  4. # input
  5. 'trans_type': 'yolov5_tiny',
  6. 'multi_scale': [0.5, 1.0], # 320 -> 640
  7. # ----------------- Model config -----------------
  8. ## Backbone
  9. 'backbone': 'elan_cspnet',
  10. 'pretrained': True,
  11. 'bk_act': 'silu',
  12. 'bk_norm': 'BN',
  13. 'bk_dpw': False,
  14. 'width': 0.25,
  15. 'depth': 0.34,
  16. 'ratio': 2.0,
  17. 'stride': [8, 16, 32], # P3, P4, P5
  18. ## Neck: SPP
  19. 'neck': 'sppf',
  20. 'expand_ratio': 0.5,
  21. 'pooling_size': 5,
  22. 'neck_act': 'silu',
  23. 'neck_norm': 'BN',
  24. 'neck_depthwise': False,
  25. ## Neck: FPN
  26. 'fpn': 'yolov5_plus_pafpn',
  27. 'fpn_reduce_layer': 'Conv',
  28. 'fpn_downsample_layer': 'Conv',
  29. 'fpn_core_block': 'ELAN_CSPBlock',
  30. 'fpn_act': 'silu',
  31. 'fpn_norm': 'BN',
  32. 'fpn_depthwise': False,
  33. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  34. [30, 61], [62, 45], [59, 119], # P4
  35. [116, 90], [156, 198], [373, 326]], # P5
  36. ## Head
  37. 'head': 'decoupled_head',
  38. 'head_act': 'silu',
  39. 'head_norm': 'BN',
  40. 'num_cls_head': 2,
  41. 'num_reg_head': 2,
  42. 'head_depthwise': False,
  43. # ----------------- Label Assignment config -----------------
  44. 'matcher': {
  45. ## For fixed assigner
  46. 'anchor_thresh': 4.0,
  47. ## For dynamic assigner
  48. 'topk': 10,
  49. 'alpha': 0.5,
  50. 'beta': 6.0},
  51. # ----------------- Loss config -----------------
  52. 'cls_loss': 'bce',
  53. 'loss_cls_weight': 0.5,
  54. 'loss_iou_weight': 7.5,
  55. # ----------------- Train config -----------------
  56. ## stop strong augment
  57. 'no_aug_epoch': 20,
  58. ## optimizer
  59. 'optimizer': 'sgd', # optional: sgd, adamw
  60. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  61. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  62. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  63. ## Model EMA
  64. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  65. 'ema_tau': 2000,
  66. ## LR schedule
  67. 'scheduler': 'linear',
  68. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  69. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  70. ## WarmUpLR schedule
  71. 'warmup_momentum': 0.8,
  72. 'warmup_bias_lr': 0.1,
  73. },
  74. 'yolov5_plus_s':{
  75. # input
  76. 'trans_type': 'yolov5_small',
  77. 'multi_scale': [0.5, 1.0], # 320 -> 640
  78. # ----------------- Model config
  79. # Backbone
  80. 'backbone': 'elan_cspnet',
  81. 'pretrained': True,
  82. 'bk_act': 'silu',
  83. 'bk_norm': 'BN',
  84. 'bk_dpw': False,
  85. 'width': 0.5,
  86. 'depth': 0.34,
  87. 'ratio': 2.0,
  88. 'stride': [8, 16, 32], # P3, P4, P5
  89. # Neck: SPP
  90. 'neck': 'sppf',
  91. 'expand_ratio': 0.5,
  92. 'pooling_size': 5,
  93. 'neck_act': 'silu',
  94. 'neck_norm': 'BN',
  95. 'neck_depthwise': False,
  96. # Neck: FPN
  97. 'fpn': 'yolov5_plus_pafpn',
  98. 'fpn_reduce_layer': 'Conv',
  99. 'fpn_downsample_layer': 'Conv',
  100. 'fpn_core_block': 'ELAN_CSPBlock',
  101. 'fpn_act': 'silu',
  102. 'fpn_norm': 'BN',
  103. 'fpn_depthwise': False,
  104. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  105. [30, 61], [62, 45], [59, 119], # P4
  106. [116, 90], [156, 198], [373, 326]], # P5
  107. # Head
  108. 'head': 'decoupled_head',
  109. 'head_act': 'silu',
  110. 'head_norm': 'BN',
  111. 'num_cls_head': 2,
  112. 'num_reg_head': 2,
  113. 'head_depthwise': False,
  114. # ----------------- Label Assignment config -----------------
  115. 'matcher': {
  116. ## For fixed assigner
  117. 'anchor_thresh': 4.0,
  118. ## For dynamic assigner
  119. 'topk': 10,
  120. 'alpha': 0.5,
  121. 'beta': 6.0},
  122. # ----------------- Loss config -----------------
  123. 'cls_loss': 'bce',
  124. 'loss_cls_weight': 0.5,
  125. 'loss_iou_weight': 7.5,
  126. # ----------------- Train config -----------------
  127. # stop strong augment
  128. 'no_aug_epoch': 20,
  129. ## optimizer
  130. 'optimizer': 'sgd', # optional: sgd, adamw
  131. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  132. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  133. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  134. ## Model EMA
  135. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  136. 'ema_tau': 2000,
  137. ## LR schedule
  138. 'scheduler': 'linear',
  139. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  140. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  141. ## WarmUpLR schedule
  142. 'warmup_momentum': 0.8,
  143. 'warmup_bias_lr': 0.1,
  144. },
  145. 'yolov5_plus_m':{
  146. # input
  147. 'trans_type': 'yolov5_medium',
  148. 'multi_scale': [0.5, 1.0], # 320 -> 640
  149. # ----------------- Model config
  150. # Backbone
  151. 'backbone': 'elan_cspnet',
  152. 'pretrained': True,
  153. 'bk_act': 'silu',
  154. 'bk_norm': 'BN',
  155. 'bk_dpw': False,
  156. 'width': 0.75,
  157. 'depth': 0.67,
  158. 'ratio': 1.5,
  159. 'stride': [8, 16, 32], # P3, P4, P5
  160. # Neck: SPP
  161. 'neck': 'sppf',
  162. 'expand_ratio': 0.5,
  163. 'pooling_size': 5,
  164. 'neck_act': 'silu',
  165. 'neck_norm': 'BN',
  166. 'neck_depthwise': False,
  167. # Neck: FPN
  168. 'fpn': 'yolov5_plus_pafpn',
  169. 'fpn_reduce_layer': 'Conv',
  170. 'fpn_downsample_layer': 'Conv',
  171. 'fpn_core_block': 'ELAN_CSPBlock',
  172. 'fpn_act': 'silu',
  173. 'fpn_norm': 'BN',
  174. 'fpn_depthwise': False,
  175. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  176. [30, 61], [62, 45], [59, 119], # P4
  177. [116, 90], [156, 198], [373, 326]], # P5
  178. # Head
  179. 'head': 'decoupled_head',
  180. 'head_act': 'silu',
  181. 'head_norm': 'BN',
  182. 'num_cls_head': 2,
  183. 'num_reg_head': 2,
  184. 'head_depthwise': False,
  185. # ----------------- Label Assignment config -----------------
  186. 'matcher': {
  187. ## For fixed assigner
  188. 'anchor_thresh': 4.0,
  189. ## For dynamic assigner
  190. 'topk': 10,
  191. 'alpha': 0.5,
  192. 'beta': 6.0},
  193. # ----------------- Loss config -----------------
  194. 'cls_loss': 'bce',
  195. 'loss_cls_weight': 0.5,
  196. 'loss_iou_weight': 7.5,
  197. # ----------------- Train config -----------------
  198. # stop strong augment
  199. 'no_aug_epoch': 20,
  200. ## optimizer
  201. 'optimizer': 'sgd', # optional: sgd, adamw
  202. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  203. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  204. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  205. ## Model EMA
  206. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  207. 'ema_tau': 2000,
  208. ## LR schedule
  209. 'scheduler': 'linear',
  210. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  211. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  212. ## WarmUpLR schedule
  213. 'warmup_momentum': 0.8,
  214. 'warmup_bias_lr': 0.1,
  215. },
  216. 'yolov5_plus_l':{
  217. # input
  218. 'trans_type': 'yolov5_large',
  219. 'multi_scale': [0.5, 1.0], # 320 -> 640
  220. # ----------------- Model config
  221. # Backbone
  222. 'backbone': 'elan_cspnet',
  223. 'pretrained': True,
  224. 'bk_act': 'silu',
  225. 'bk_norm': 'BN',
  226. 'bk_dpw': False,
  227. 'width': 1.0,
  228. 'depth': 1.0,
  229. 'ratio': 1.0,
  230. 'stride': [8, 16, 32], # P3, P4, P5
  231. # Neck: SPP
  232. 'neck': 'sppf',
  233. 'expand_ratio': 0.5,
  234. 'pooling_size': 5,
  235. 'neck_act': 'silu',
  236. 'neck_norm': 'BN',
  237. 'neck_depthwise': False,
  238. # Neck: FPN
  239. 'fpn': 'yolov5_plus_pafpn',
  240. 'fpn_reduce_layer': 'Conv',
  241. 'fpn_downsample_layer': 'Conv',
  242. 'fpn_core_block': 'ELAN_CSPBlock',
  243. 'fpn_act': 'silu',
  244. 'fpn_norm': 'BN',
  245. 'fpn_depthwise': False,
  246. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  247. [30, 61], [62, 45], [59, 119], # P4
  248. [116, 90], [156, 198], [373, 326]], # P5
  249. # Head
  250. 'head': 'decoupled_head',
  251. 'head_act': 'silu',
  252. 'head_norm': 'BN',
  253. 'num_cls_head': 2,
  254. 'num_reg_head': 2,
  255. 'head_depthwise': False,
  256. # ----------------- Label Assignment config -----------------
  257. 'matcher': {
  258. ## For fixed assigner
  259. 'anchor_thresh': 4.0,
  260. ## For dynamic assigner
  261. 'topk': 10,
  262. 'alpha': 0.5,
  263. 'beta': 6.0},
  264. # ----------------- Loss config -----------------
  265. 'cls_loss': 'bce',
  266. 'loss_cls_weight': 0.5,
  267. 'loss_iou_weight': 7.5,
  268. # ----------------- Train config -----------------
  269. # stop strong augment
  270. 'no_aug_epoch': 20,
  271. ## optimizer
  272. 'optimizer': 'sgd', # optional: sgd, adamw
  273. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  274. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  275. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  276. ## Model EMA
  277. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  278. 'ema_tau': 2000,
  279. ## LR schedule
  280. 'scheduler': 'linear',
  281. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  282. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  283. ## WarmUpLR schedule
  284. 'warmup_momentum': 0.8,
  285. 'warmup_bias_lr': 0.1,
  286. },
  287. 'yolov5_plus_x':{
  288. # input
  289. 'trans_type': 'yolov5_huge',
  290. 'multi_scale': [0.5, 1.0], # 320 -> 640
  291. # ----------------- Model config
  292. # Backbone
  293. 'backbone': 'elan_cspnet',
  294. 'pretrained': False,
  295. 'bk_act': 'silu',
  296. 'bk_norm': 'BN',
  297. 'bk_dpw': False,
  298. 'width': 1.25,
  299. 'depth': 1.0,
  300. 'ratio': 1.0,
  301. 'stride': [8, 16, 32], # P3, P4, P5
  302. # Neck: SPP
  303. 'neck': 'sppf',
  304. 'expand_ratio': 0.5,
  305. 'pooling_size': 5,
  306. 'neck_act': 'silu',
  307. 'neck_norm': 'BN',
  308. 'neck_depthwise': False,
  309. # Neck: FPN
  310. 'fpn': 'yolov5_plus_pafpn',
  311. 'fpn_reduce_layer': 'Conv',
  312. 'fpn_downsample_layer': 'Conv',
  313. 'fpn_core_block': 'ELAN_CSPBlock',
  314. 'fpn_act': 'silu',
  315. 'fpn_norm': 'BN',
  316. 'fpn_depthwise': False,
  317. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  318. [30, 61], [62, 45], [59, 119], # P4
  319. [116, 90], [156, 198], [373, 326]], # P5
  320. # Head
  321. 'head': 'decoupled_head',
  322. 'head_act': 'silu',
  323. 'head_norm': 'BN',
  324. 'num_cls_head': 2,
  325. 'num_reg_head': 2,
  326. 'head_depthwise': False,
  327. # ----------------- Label Assignment config -----------------
  328. 'matcher': {
  329. ## For fixed assigner
  330. 'anchor_thresh': 4.0,
  331. ## For dynamic assigner
  332. 'topk': 10,
  333. 'alpha': 0.5,
  334. 'beta': 6.0},
  335. # ----------------- Loss config -----------------
  336. 'cls_loss': 'bce',
  337. 'loss_cls_weight': 0.5,
  338. 'loss_iou_weight': 7.5,
  339. # ----------------- Train config -----------------
  340. # stop strong augment
  341. 'no_aug_epoch': 20,
  342. ## optimizer
  343. 'optimizer': 'sgd', # optional: sgd, adamw
  344. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  345. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  346. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  347. ## Model EMA
  348. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  349. 'ema_tau': 2000,
  350. ## LR schedule
  351. 'scheduler': 'linear',
  352. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  353. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  354. ## WarmUpLR schedule
  355. 'warmup_momentum': 0.8,
  356. 'warmup_bias_lr': 0.1,
  357. },
  358. }