| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- import torch
- import torch.nn.functional as F
- from utils.box_ops import *
- # -------------------------- YOLOX's SimOTA Assigner --------------------------
- ## Simple OTA
- class SimOTA(object):
- """
- This code referenced to https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
- """
- def __init__(self, num_classes, center_sampling_radius, topk_candidate ):
- self.num_classes = num_classes
- self.center_sampling_radius = center_sampling_radius
- self.topk_candidate = topk_candidate
- @torch.no_grad()
- def __call__(self,
- fpn_strides,
- anchors,
- pred_cls,
- pred_box,
- tgt_labels,
- tgt_bboxes):
- # [M,]
- strides_tensor = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
- for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
- # List[F, M, 2] -> [M, 2]
- anchors = torch.cat(anchors, dim=0)
- num_anchor = anchors.shape[0]
- num_gt = len(tgt_labels)
- # ----------------------- Find inside points -----------------------
- fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
- tgt_bboxes, anchors, strides_tensor, num_anchor, num_gt)
- cls_preds = pred_cls[fg_mask].float() # [Mp, C]
- box_preds = pred_box[fg_mask].float() # [Mp, 4]
- # ----------------------- Reg cost -----------------------
- pair_wise_ious, _ = box_iou(tgt_bboxes, box_preds) # [N, Mp]
- reg_cost = -torch.log(pair_wise_ious + 1e-8) # [N, Mp]
- # ----------------------- Cls cost -----------------------
- with torch.cuda.amp.autocast(enabled=False):
- # [Mp, C] -> [N, Mp, C]
- cls_preds_expand = cls_preds.unsqueeze(0).repeat(num_gt, 1, 1)
- # prepare cls_target
- cls_targets = F.one_hot(tgt_labels.long(), self.num_classes).float()
- cls_targets = cls_targets.unsqueeze(1).repeat(1, cls_preds_expand.size(1), 1)
- cls_targets *= pair_wise_ious.unsqueeze(-1) # iou-aware
- # [N, Mp]
- cls_cost = F.binary_cross_entropy_with_logits(cls_preds_expand, cls_targets, reduction="none").sum(-1)
- del cls_preds_expand
- #----------------------- Dynamic K-Matching -----------------------
- cost_matrix = (
- cls_cost
- + 3.0 * reg_cost
- + 100000.0 * (~is_in_boxes_and_center)
- ) # [N, Mp]
- (
- assigned_labels, # [num_fg,]
- assigned_ious, # [num_fg,]
- assigned_indexs, # [num_fg,]
- ) = self.dynamic_k_matching(
- cost_matrix,
- pair_wise_ious,
- tgt_labels,
- num_gt,
- fg_mask
- )
- del cls_cost, cost_matrix, pair_wise_ious, reg_cost
- return fg_mask, assigned_labels, assigned_ious, assigned_indexs
- def get_in_boxes_info(
- self,
- gt_bboxes, # [N, 4]
- anchors, # [M, 2]
- strides, # [M,]
- num_anchors, # M
- num_gt, # N
- ):
- # anchor center
- x_centers = anchors[:, 0]
- y_centers = anchors[:, 1]
- # [M,] -> [1, M] -> [N, M]
- x_centers = x_centers.unsqueeze(0).repeat(num_gt, 1)
- y_centers = y_centers.unsqueeze(0).repeat(num_gt, 1)
- # [N,] -> [N, 1] -> [N, M]
- gt_bboxes_l = gt_bboxes[:, 0].unsqueeze(1).repeat(1, num_anchors) # x1
- gt_bboxes_t = gt_bboxes[:, 1].unsqueeze(1).repeat(1, num_anchors) # y1
- gt_bboxes_r = gt_bboxes[:, 2].unsqueeze(1).repeat(1, num_anchors) # x2
- gt_bboxes_b = gt_bboxes[:, 3].unsqueeze(1).repeat(1, num_anchors) # y2
- b_l = x_centers - gt_bboxes_l
- b_r = gt_bboxes_r - x_centers
- b_t = y_centers - gt_bboxes_t
- b_b = gt_bboxes_b - y_centers
- bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
- is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
- is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
- # in fixed center
- center_radius = self.center_sampling_radius
- # [N, 2]
- gt_centers = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) * 0.5
-
- # [1, M]
- center_radius_ = center_radius * strides.unsqueeze(0)
- gt_bboxes_l = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # x1
- gt_bboxes_t = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # y1
- gt_bboxes_r = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # x2
- gt_bboxes_b = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # y2
- c_l = x_centers - gt_bboxes_l
- c_r = gt_bboxes_r - x_centers
- c_t = y_centers - gt_bboxes_t
- c_b = gt_bboxes_b - y_centers
- center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
- is_in_centers = center_deltas.min(dim=-1).values > 0.0
- is_in_centers_all = is_in_centers.sum(dim=0) > 0
- # in boxes and in centers
- is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
- is_in_boxes_and_center = (
- is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
- )
- return is_in_boxes_anchor, is_in_boxes_and_center
-
-
- def dynamic_k_matching(
- self,
- cost,
- pair_wise_ious,
- gt_classes,
- num_gt,
- fg_mask
- ):
- # Dynamic K
- # ---------------------------------------------------------------
- matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
- ious_in_boxes_matrix = pair_wise_ious
- n_candidate_k = min(self.topk_candidate, ious_in_boxes_matrix.size(1))
- topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
- dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
- dynamic_ks = dynamic_ks.tolist()
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
- )
- matching_matrix[gt_idx][pos_idx] = 1
- del topk_ious, dynamic_ks, pos_idx
- anchor_matching_gt = matching_matrix.sum(0)
- if (anchor_matching_gt > 1).sum() > 0:
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
- matching_matrix[:, anchor_matching_gt > 1] *= 0
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
- fg_mask_inboxes = matching_matrix.sum(0) > 0
- fg_mask[fg_mask.clone()] = fg_mask_inboxes
- assigned_indexs = matching_matrix[:, fg_mask_inboxes].argmax(0)
- assigned_labels = gt_classes[assigned_indexs]
- assigned_ious = (matching_matrix * pair_wise_ious).sum(0)[
- fg_mask_inboxes
- ]
- return assigned_labels, assigned_ious, assigned_indexs
-
- # -------------------------- RTMDet's Aligned SimOTA Assigner --------------------------
- ## Aligned SimOTA
- class AlignedSimOTA(object):
- """
- This code referenced to https://github.com/open-mmlab/mmyolo/models/task_modules/assigners/batch_dsl_assigner.py
- """
- def __init__(self, num_classes, soft_center_radius=3.0, topk=13, iou_weight=3.0):
- self.num_classes = num_classes
- self.soft_center_radius = soft_center_radius
- self.topk = topk
- self.iou_weight = iou_weight
- @torch.no_grad()
- def __call__(self,
- fpn_strides,
- anchors,
- pred_cls,
- pred_box,
- gt_labels,
- gt_bboxes):
- # [M,]
- strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
- for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
- # List[F, M, 2] -> [M, 2]
- anchors = torch.cat(anchors, dim=0)
- num_gt = len(gt_labels)
- # check gt
- if num_gt == 0 or gt_bboxes.max().item() == 0.:
- return {
- 'assigned_labels': gt_labels.new_full(pred_cls[..., 0].shape,
- self.num_classes,
- dtype=torch.long),
- 'assigned_bboxes': gt_bboxes.new_full(pred_box.shape, 0),
- 'assign_metrics': gt_bboxes.new_full(pred_cls[..., 0].shape, 0)
- }
-
- # get inside points: [N, M]
- is_in_gt = self.find_inside_points(gt_bboxes, anchors)
- valid_mask = is_in_gt.sum(dim=0) > 0 # [M,]
- # ----------------------------------- Soft center prior -----------------------------------
- gt_center = (gt_bboxes[..., :2] + gt_bboxes[..., 2:]) / 2.0
- distance = (anchors.unsqueeze(0) - gt_center.unsqueeze(1)
- ).pow(2).sum(-1).sqrt() / strides.unsqueeze(0) # [N, M]
- distance = distance * valid_mask.unsqueeze(0)
- soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
- # ----------------------------------- Regression cost -----------------------------------
- pair_wise_ious, _ = box_iou(gt_bboxes, pred_box) # [N, M]
- pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) * self.iou_weight
- # ----------------------------------- Classification cost -----------------------------------
- ## select the predicted scores corresponded to the gt_labels
- pairwise_pred_scores = pred_cls.permute(1, 0) # [M, C] -> [C, M]
- pairwise_pred_scores = pairwise_pred_scores[gt_labels.long(), :].float() # [N, M]
- ## scale factor
- scale_factor = (pair_wise_ious - pairwise_pred_scores.sigmoid()).abs().pow(2.0)
- ## cls cost
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
- pairwise_pred_scores, pair_wise_ious,
- reduction="none") * scale_factor # [N, M]
-
- del pairwise_pred_scores
- ## foreground cost matrix
- cost_matrix = pair_wise_cls_loss + pair_wise_ious_loss + soft_center_prior
- max_pad_value = torch.ones_like(cost_matrix) * 1e9
- cost_matrix = torch.where(valid_mask[None].repeat(num_gt, 1), # [N, M]
- cost_matrix, max_pad_value)
- # ----------------------------------- dynamic label assignment -----------------------------------
- (
- matched_pred_ious,
- matched_gt_inds,
- fg_mask_inboxes
- ) = self.dynamic_k_matching(
- cost_matrix,
- pair_wise_ious,
- num_gt
- )
- del pair_wise_cls_loss, cost_matrix, pair_wise_ious, pair_wise_ious_loss
- # -----------------------------------process assigned labels -----------------------------------
- assigned_labels = gt_labels.new_full(pred_cls[..., 0].shape,
- self.num_classes) # [M,]
- assigned_labels[fg_mask_inboxes] = gt_labels[matched_gt_inds].squeeze(-1)
- assigned_labels = assigned_labels.long() # [M,]
- assigned_bboxes = gt_bboxes.new_full(pred_box.shape, 0) # [M, 4]
- assigned_bboxes[fg_mask_inboxes] = gt_bboxes[matched_gt_inds] # [M, 4]
- assign_metrics = gt_bboxes.new_full(pred_cls[..., 0].shape, 0) # [M, 4]
- assign_metrics[fg_mask_inboxes] = matched_pred_ious # [M, 4]
- assigned_dict = dict(
- assigned_labels=assigned_labels,
- assigned_bboxes=assigned_bboxes,
- assign_metrics=assign_metrics
- )
-
- return assigned_dict
- def find_inside_points(self, gt_bboxes, anchors):
- """
- gt_bboxes: Tensor -> [N, 2]
- anchors: Tensor -> [M, 2]
- """
- num_anchors = anchors.shape[0]
- num_gt = gt_bboxes.shape[0]
- anchors_expand = anchors.unsqueeze(0).repeat(num_gt, 1, 1) # [N, M, 2]
- gt_bboxes_expand = gt_bboxes.unsqueeze(1).repeat(1, num_anchors, 1) # [N, M, 4]
- # offset
- lt = anchors_expand - gt_bboxes_expand[..., :2]
- rb = gt_bboxes_expand[..., 2:] - anchors_expand
- bbox_deltas = torch.cat([lt, rb], dim=-1)
- is_in_gts = bbox_deltas.min(dim=-1).values > 0
- return is_in_gts
-
- def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
- """Use IoU and matching cost to calculate the dynamic top-k positive
- targets.
- Args:
- cost_matrix (Tensor): Cost matrix.
- pairwise_ious (Tensor): Pairwise iou matrix.
- num_gt (int): Number of gt.
- valid_mask (Tensor): Mask for valid bboxes.
- Returns:
- tuple: matched ious and gt indexes.
- """
- matching_matrix = torch.zeros_like(cost_matrix, dtype=torch.uint8)
- # select candidate topk ious for dynamic-k calculation
- candidate_topk = min(self.topk, pairwise_ious.size(1))
- topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=1)
- # calculate dynamic k for each gt
- dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
- # sorting the batch cost matirx is faster than topk
- _, sorted_indices = torch.sort(cost_matrix, dim=1)
- for gt_idx in range(num_gt):
- topk_ids = sorted_indices[gt_idx, :dynamic_ks[gt_idx]]
- matching_matrix[gt_idx, :][topk_ids] = 1
- del topk_ious, dynamic_ks, topk_ids
- prior_match_gt_mask = matching_matrix.sum(0) > 1
- if prior_match_gt_mask.sum() > 0:
- cost_min, cost_argmin = torch.min(
- cost_matrix[:, prior_match_gt_mask], dim=0)
- matching_matrix[:, prior_match_gt_mask] *= 0
- matching_matrix[cost_argmin, prior_match_gt_mask] = 1
- # get foreground mask inside box and center prior
- fg_mask_inboxes = matching_matrix.sum(0) > 0
- matched_pred_ious = (matching_matrix *
- pairwise_ious).sum(0)[fg_mask_inboxes]
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
- return matched_pred_ious, matched_gt_inds, fg_mask_inboxes
- def build_matcher(cfg, num_classes):
- if cfg['matcher'] == "simota":
- matcher = SimOTA(
- center_sampling_radius=cfg['matcher_hpy'][cfg['matcher']]['center_sampling_radius'],
- topk_candidate=cfg['matcher_hpy'][cfg['matcher']]['topk_candidate'],
- num_classes=num_classes
- )
- elif cfg['matcher'] == "aligned_simota":
- matcher = AlignedSimOTA(
- num_classes=num_classes,
- soft_center_radius=cfg['matcher_hpy'][cfg['matcher']]['soft_center_radius'],
- topk=cfg['matcher_hpy'][cfg['matcher']]['topk_candicate'],
- iou_weight=cfg['matcher_hpy'][cfg['matcher']]['iou_weight']
- )
- return matcher
|