demo.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. import argparse
  2. import cv2
  3. import os
  4. import time
  5. import numpy as np
  6. import imageio
  7. import torch
  8. # load transform
  9. from dataset.build import build_transform
  10. # load some utils
  11. from utils.misc import load_weight
  12. from utils.box_ops import rescale_bboxes
  13. from utils.vis_tools import visualize
  14. from models.detectors import build_model
  15. from config import build_model_config, build_trans_config
  16. def parse_args():
  17. parser = argparse.ArgumentParser(description='YOLO Demo')
  18. # basic
  19. parser.add_argument('-size', '--img_size', default=640, type=int,
  20. help='the max size of input image')
  21. parser.add_argument('--mosaic', default=None, type=float,
  22. help='mosaic augmentation.')
  23. parser.add_argument('--mixup', default=None, type=float,
  24. help='mixup augmentation.')
  25. parser.add_argument('--mode', default='image',
  26. type=str, help='Use the data from image, video or camera')
  27. parser.add_argument('--cuda', action='store_true', default=False,
  28. help='Use cuda')
  29. parser.add_argument('--path_to_img', default='dataset/demo/images/',
  30. type=str, help='The path to image files')
  31. parser.add_argument('--path_to_vid', default='dataset/demo/videos/',
  32. type=str, help='The path to video files')
  33. parser.add_argument('--path_to_save', default='det_results/demos/',
  34. type=str, help='The path to save the detection results')
  35. parser.add_argument('-vt', '--vis_thresh', default=0.4, type=float,
  36. help='Final confidence threshold for visualization')
  37. parser.add_argument('--show', action='store_true', default=False,
  38. help='show visualization')
  39. parser.add_argument('--gif', action='store_true', default=False,
  40. help='generate gif.')
  41. # model
  42. parser.add_argument('-m', '--model', default='yolov1', type=str,
  43. help='build yolo')
  44. parser.add_argument('-nc', '--num_classes', default=80, type=int,
  45. help='number of classes.')
  46. parser.add_argument('--weight', default=None,
  47. type=str, help='Trained state_dict file path to open')
  48. parser.add_argument('-ct', '--conf_thresh', default=0.1, type=float,
  49. help='confidence threshold')
  50. parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
  51. help='NMS threshold')
  52. parser.add_argument('--topk', default=100, type=int,
  53. help='topk candidates for testing')
  54. parser.add_argument("--deploy", action="store_true", default=False,
  55. help="deploy mode or not")
  56. parser.add_argument('--fuse_repconv', action='store_true', default=False,
  57. help='fuse RepConv')
  58. parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
  59. help='fuse Conv & BN')
  60. parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
  61. help='Perform NMS operations regardless of category.')
  62. return parser.parse_args()
  63. def detect(args,
  64. model,
  65. device,
  66. transform,
  67. vis_thresh,
  68. mode='image'):
  69. # class color
  70. np.random.seed(0)
  71. class_colors = [(np.random.randint(255),
  72. np.random.randint(255),
  73. np.random.randint(255)) for _ in range(80)]
  74. save_path = os.path.join(args.path_to_save, mode)
  75. os.makedirs(save_path, exist_ok=True)
  76. # ------------------------- Camera ----------------------------
  77. if mode == 'camera':
  78. print('use camera !!!')
  79. fourcc = cv2.VideoWriter_fourcc(*'XVID')
  80. save_size = (640, 480)
  81. cur_time = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
  82. save_video_name = os.path.join(save_path, cur_time+'.avi')
  83. fps = 15.0
  84. out = cv2.VideoWriter(save_video_name, fourcc, fps, save_size)
  85. print(save_video_name)
  86. image_list = []
  87. cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
  88. while True:
  89. ret, frame = cap.read()
  90. if ret:
  91. if cv2.waitKey(1) == ord('q'):
  92. break
  93. orig_h, orig_w, _ = frame.shape
  94. # prepare
  95. x, _, deltas = transform(frame)
  96. x = x.unsqueeze(0).to(device) / 255.
  97. # inference
  98. t0 = time.time()
  99. bboxes, scores, labels = model(x)
  100. t1 = time.time()
  101. print("detection time used ", t1-t0, "s")
  102. # rescale bboxes
  103. origin_img_size = [orig_h, orig_w]
  104. cur_img_size = [*x.shape[-2:]]
  105. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  106. # vis detection
  107. frame_vis = visualize(img=frame,
  108. bboxes=bboxes,
  109. scores=scores,
  110. labels=labels,
  111. class_colors=class_colors,
  112. vis_thresh=vis_thresh)
  113. frame_resized = cv2.resize(frame_vis, save_size)
  114. out.write(frame_resized)
  115. if args.gif:
  116. gif_resized = cv2.resize(frame, (640, 480))
  117. gif_resized_rgb = gif_resized[..., (2, 1, 0)]
  118. image_list.append(gif_resized_rgb)
  119. if args.show:
  120. cv2.imshow('detection', frame_resized)
  121. cv2.waitKey(1)
  122. else:
  123. break
  124. cap.release()
  125. out.release()
  126. cv2.destroyAllWindows()
  127. # generate GIF
  128. if args.gif:
  129. save_gif_path = os.path.join(save_path, 'gif_files')
  130. os.makedirs(save_gif_path, exist_ok=True)
  131. save_gif_name = os.path.join(save_gif_path, '{}.gif'.format(cur_time))
  132. print('generating GIF ...')
  133. imageio.mimsave(save_gif_name, image_list, fps=fps)
  134. print('GIF done: {}'.format(save_gif_name))
  135. # ------------------------- Video ---------------------------
  136. elif mode == 'video':
  137. video = cv2.VideoCapture(args.path_to_vid)
  138. fourcc = cv2.VideoWriter_fourcc(*'XVID')
  139. save_size = (640, 480)
  140. cur_time = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
  141. save_video_name = os.path.join(save_path, cur_time+'.avi')
  142. fps = 15.0
  143. out = cv2.VideoWriter(save_video_name, fourcc, fps, save_size)
  144. print(save_video_name)
  145. image_list = []
  146. while(True):
  147. ret, frame = video.read()
  148. if ret:
  149. # ------------------------- Detection ---------------------------
  150. orig_h, orig_w, _ = frame.shape
  151. # prepare
  152. x, _, deltas = transform(frame)
  153. x = x.unsqueeze(0).to(device) / 255.
  154. # inference
  155. t0 = time.time()
  156. bboxes, scores, labels = model(x)
  157. t1 = time.time()
  158. print("detection time used ", t1-t0, "s")
  159. # rescale bboxes
  160. origin_img_size = [orig_h, orig_w]
  161. cur_img_size = [*x.shape[-2:]]
  162. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  163. # vis detection
  164. frame_vis = visualize(img=frame,
  165. bboxes=bboxes,
  166. scores=scores,
  167. labels=labels,
  168. class_colors=class_colors,
  169. vis_thresh=vis_thresh)
  170. frame_resized = cv2.resize(frame_vis, save_size)
  171. out.write(frame_resized)
  172. if args.gif:
  173. gif_resized = cv2.resize(frame, (640, 480))
  174. gif_resized_rgb = gif_resized[..., (2, 1, 0)]
  175. image_list.append(gif_resized_rgb)
  176. if args.show:
  177. cv2.imshow('detection', frame_resized)
  178. cv2.waitKey(1)
  179. else:
  180. break
  181. video.release()
  182. out.release()
  183. cv2.destroyAllWindows()
  184. # generate GIF
  185. if args.gif:
  186. save_gif_path = os.path.join(save_path, 'gif_files')
  187. os.makedirs(save_gif_path, exist_ok=True)
  188. save_gif_name = os.path.join(save_gif_path, '{}.gif'.format(cur_time))
  189. print('generating GIF ...')
  190. imageio.mimsave(save_gif_name, image_list, fps=fps)
  191. print('GIF done: {}'.format(save_gif_name))
  192. # ------------------------- Image ----------------------------
  193. elif mode == 'image':
  194. for i, img_id in enumerate(os.listdir(args.path_to_img)):
  195. image = cv2.imread((args.path_to_img + '/' + img_id), cv2.IMREAD_COLOR)
  196. orig_h, orig_w, _ = image.shape
  197. # prepare
  198. x, _, deltas = transform(image)
  199. x = x.unsqueeze(0).to(device) / 255.
  200. # inference
  201. t0 = time.time()
  202. bboxes, scores, labels = model(x)
  203. t1 = time.time()
  204. print("detection time used ", t1-t0, "s")
  205. # rescale bboxes
  206. origin_img_size = [orig_h, orig_w]
  207. cur_img_size = [*x.shape[-2:]]
  208. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  209. # vis detection
  210. img_processed = visualize(img=image,
  211. bboxes=bboxes,
  212. scores=scores,
  213. labels=labels,
  214. class_colors=class_colors,
  215. vis_thresh=vis_thresh)
  216. cv2.imwrite(os.path.join(save_path, str(i).zfill(6)+'.jpg'), img_processed)
  217. if args.show:
  218. cv2.imshow('detection', img_processed)
  219. cv2.waitKey(0)
  220. def run():
  221. args = parse_args()
  222. # cuda
  223. if args.cuda:
  224. print('use cuda')
  225. device = torch.device("cuda")
  226. else:
  227. device = torch.device("cpu")
  228. # config
  229. model_cfg = build_model_config(args)
  230. trans_cfg = build_trans_config(model_cfg['trans_type'])
  231. # build model
  232. model = build_model(args, model_cfg, device, args.num_classes, False)
  233. # load trained weight
  234. model = load_weight(model, args.weight, args.fuse_conv_bn)
  235. model.to(device).eval()
  236. # transform
  237. val_transform, trans_cfg = build_transform(args, trans_cfg, model_cfg['max_stride'], is_train=False)
  238. print("================= DETECT =================")
  239. # run
  240. detect(args=args,
  241. model=model,
  242. device=device,
  243. transform=val_transform,
  244. mode=args.mode,
  245. vis_thresh=args.vis_thresh)
  246. if __name__ == '__main__':
  247. run()