yolox2.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .yolox2_backbone import build_backbone
  6. from .yolox2_neck import build_neck
  7. from .yolox2_pafpn import build_fpn
  8. from .yolox2_head import build_head
  9. # --------------- External components ---------------
  10. from utils.misc import multiclass_nms
  11. # YOLOX-2
  12. class YOLOX2(nn.Module):
  13. def __init__(self,
  14. cfg,
  15. device,
  16. num_classes = 20,
  17. conf_thresh = 0.05,
  18. nms_thresh = 0.6,
  19. trainable = False,
  20. topk = 1000,
  21. deploy = False):
  22. super(YOLOX2, self).__init__()
  23. # ---------------------- Basic Parameters ----------------------
  24. self.cfg = cfg
  25. self.device = device
  26. self.stride = cfg['stride']
  27. self.num_classes = num_classes
  28. self.trainable = trainable
  29. self.conf_thresh = conf_thresh
  30. self.nms_thresh = nms_thresh
  31. self.topk = topk
  32. self.deploy = deploy
  33. self.head_dim = round(256*cfg['width'])
  34. # ---------------------- Network Parameters ----------------------
  35. ## ----------- Backbone -----------
  36. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  37. ## ----------- Neck: SPP -----------
  38. self.neck = build_neck(cfg=cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  39. feats_dim[-1] = self.neck.out_dim
  40. ## ----------- Neck: FPN -----------
  41. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  42. self.fpn_dims = self.fpn.out_dim
  43. ## ----------- Heads -----------
  44. self.group_heads = build_head(cfg, self.fpn_dims, self.head_dim, num_classes)
  45. ## ----------- Preds -----------
  46. self.obj_preds = nn.ModuleList(
  47. [nn.Conv2d(self.head_dim, 1, kernel_size=1)
  48. for _ in range(len(self.stride))
  49. ])
  50. self.cls_preds = nn.ModuleList(
  51. [nn.Conv2d(self.head_dim, num_classes, kernel_size=1)
  52. for _ in range(len(self.stride))
  53. ])
  54. self.reg_preds = nn.ModuleList(
  55. [nn.Conv2d(self.head_dim, 4, kernel_size=1)
  56. for _ in range(len(self.stride))
  57. ])
  58. # ---------------------- Basic Functions ----------------------
  59. ## generate anchor points
  60. def generate_anchors(self, level, fmp_size):
  61. """
  62. fmp_size: (List) [H, W]
  63. """
  64. # generate grid cells
  65. fmp_h, fmp_w = fmp_size
  66. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  67. # [H, W, 2] -> [HW, 2]
  68. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  69. anchor_xy += 0.5 # add center offset
  70. anchor_xy *= self.stride[level]
  71. anchors = anchor_xy.to(self.device)
  72. return anchors
  73. ## post-process
  74. def post_process(self, obj_preds, cls_preds, box_preds):
  75. """
  76. Input:
  77. obj_preds: List(Tensor) [[H x W, 1], ...]
  78. cls_preds: List(Tensor) [[H x W, C], ...]
  79. box_preds: List(Tensor) [[H x W, 4], ...]
  80. anchors: List(Tensor) [[H x W, 2], ...]
  81. """
  82. all_scores = []
  83. all_labels = []
  84. all_bboxes = []
  85. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  86. # (H x W x KA x C,)
  87. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  88. # Keep top k top scoring indices only.
  89. num_topk = min(self.topk, box_pred_i.size(0))
  90. # torch.sort is actually faster than .topk (at least on GPUs)
  91. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  92. topk_scores = predicted_prob[:num_topk]
  93. topk_idxs = topk_idxs[:num_topk]
  94. # filter out the proposals with low confidence score
  95. keep_idxs = topk_scores > self.conf_thresh
  96. scores = topk_scores[keep_idxs]
  97. topk_idxs = topk_idxs[keep_idxs]
  98. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  99. labels = topk_idxs % self.num_classes
  100. bboxes = box_pred_i[anchor_idxs]
  101. all_scores.append(scores)
  102. all_labels.append(labels)
  103. all_bboxes.append(bboxes)
  104. scores = torch.cat(all_scores)
  105. labels = torch.cat(all_labels)
  106. bboxes = torch.cat(all_bboxes)
  107. # to cpu & numpy
  108. scores = scores.cpu().numpy()
  109. labels = labels.cpu().numpy()
  110. bboxes = bboxes.cpu().numpy()
  111. # nms
  112. scores, labels, bboxes = multiclass_nms(
  113. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  114. return bboxes, scores, labels
  115. # ---------------------- Main Process for Inference ----------------------
  116. @torch.no_grad()
  117. def inference_single_image(self, x):
  118. # ---------------- Backbone ----------------
  119. pyramid_feats = self.backbone(x)
  120. # ---------------- Neck: SPP ----------------
  121. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  122. # ---------------- Neck: PaFPN ----------------
  123. pyramid_feats = self.fpn(pyramid_feats)
  124. # ---------------- Heads ----------------
  125. cls_feats, reg_feats = self.group_heads(pyramid_feats)
  126. # ---------------- Preds ----------------
  127. all_obj_preds = []
  128. all_cls_preds = []
  129. all_box_preds = []
  130. for level, (cls_feat, reg_feat) in enumerate(zip(cls_feats, reg_feats)):
  131. # prediction
  132. obj_pred = self.obj_preds[level](reg_feat)
  133. cls_pred = self.cls_preds[level](cls_feat)
  134. reg_pred = self.reg_preds[level](reg_feat)
  135. # anchors: [M, 2]
  136. fmp_size = cls_feat.shape[-2:]
  137. anchors = self.generate_anchors(level, fmp_size)
  138. # [1, C, H, W] -> [H, W, C] -> [M, C]
  139. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  140. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  141. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  142. # decode bbox
  143. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  144. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  145. pred_x1y1 = ctr_pred - wh_pred * 0.5
  146. pred_x2y2 = ctr_pred + wh_pred * 0.5
  147. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  148. all_obj_preds.append(obj_pred)
  149. all_cls_preds.append(cls_pred)
  150. all_box_preds.append(box_pred)
  151. if self.deploy:
  152. obj_preds = torch.cat(all_obj_preds, dim=0)
  153. cls_preds = torch.cat(all_cls_preds, dim=0)
  154. box_preds = torch.cat(all_box_preds, dim=0)
  155. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  156. bboxes = box_preds
  157. # [n_anchors_all, 4 + C]
  158. outputs = torch.cat([bboxes, scores], dim=-1)
  159. return outputs
  160. else:
  161. # post process
  162. bboxes, scores, labels = self.post_process(
  163. all_obj_preds, all_cls_preds, all_box_preds)
  164. return bboxes, scores, labels
  165. # ---------------------- Main Process for Training ----------------------
  166. def forward(self, x):
  167. if not self.trainable:
  168. return self.inference_single_image(x)
  169. else:
  170. # ---------------- Backbone ----------------
  171. pyramid_feats = self.backbone(x)
  172. # ---------------- Neck: SPP ----------------
  173. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  174. # ---------------- Neck: PaFPN ----------------
  175. pyramid_feats = self.fpn(pyramid_feats)
  176. # ---------------- Heads ----------------
  177. cls_feats, reg_feats = self.group_heads(pyramid_feats)
  178. # ---------------- Preds ----------------
  179. all_anchors = []
  180. all_obj_preds = []
  181. all_cls_preds = []
  182. all_box_preds = []
  183. for level, (cls_feat, reg_feat) in enumerate(zip(cls_feats, reg_feats)):
  184. # prediction
  185. obj_pred = self.obj_preds[level](reg_feat)
  186. cls_pred = self.cls_preds[level](cls_feat)
  187. reg_pred = self.reg_preds[level](reg_feat)
  188. B, _, H, W = cls_pred.size()
  189. fmp_size = [H, W]
  190. # generate anchor boxes: [M, 4]
  191. anchors = self.generate_anchors(level, fmp_size)
  192. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  193. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  194. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  195. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  196. # decode bbox
  197. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  198. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  199. pred_x1y1 = ctr_pred - wh_pred * 0.5
  200. pred_x2y2 = ctr_pred + wh_pred * 0.5
  201. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  202. all_obj_preds.append(obj_pred)
  203. all_cls_preds.append(cls_pred)
  204. all_box_preds.append(box_pred)
  205. all_anchors.append(anchors)
  206. # output dict
  207. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  208. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  209. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  210. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  211. 'strides': self.stride} # List(Int) [8, 16, 32]
  212. return outputs