build.py 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. #!/usr/bin/env python3
  2. # -*- coding:utf-8 -*-
  3. import torch
  4. import torch.nn as nn
  5. from .loss import build_criterion
  6. from .yolox2 import YOLOX2
  7. # build object detector
  8. def build_yolox2(args, cfg, device, num_classes=80, trainable=False, deploy=False):
  9. print('==============================')
  10. print('Build {} ...'.format(args.model.upper()))
  11. # -------------- Build YOLO --------------
  12. model = YOLOX2(
  13. cfg=cfg,
  14. device=device,
  15. num_classes=num_classes,
  16. trainable=trainable,
  17. conf_thresh=args.conf_thresh,
  18. nms_thresh=args.nms_thresh,
  19. topk=args.topk,
  20. deploy=deploy
  21. )
  22. # -------------- Initialize YOLO --------------
  23. for m in model.modules():
  24. if isinstance(m, nn.BatchNorm2d):
  25. m.eps = 1e-3
  26. m.momentum = 0.03
  27. # Init head
  28. init_prob = 0.01
  29. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  30. ## obj pred
  31. for obj_pred in model.obj_preds:
  32. b = obj_pred.bias.view(1, -1)
  33. b.data.fill_(bias_value.item())
  34. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  35. ## cls pred
  36. for cls_pred in model.cls_preds:
  37. b = cls_pred.bias.view(1, -1)
  38. b.data.fill_(bias_value.item())
  39. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  40. ## reg pred
  41. for reg_pred in model.reg_preds:
  42. b = reg_pred.bias.view(-1, )
  43. b.data.fill_(1.0)
  44. reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  45. w = reg_pred.weight
  46. w.data.fill_(0.)
  47. reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  48. # -------------- Build criterion --------------
  49. criterion = None
  50. if trainable:
  51. # build criterion for training
  52. criterion = build_criterion(cfg, device, num_classes)
  53. return model, criterion