| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- import torch
- import torch.nn.functional as F
- from .matcher import TaskAlignedAssigner
- from utils.box_ops import get_ious
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- class Criterion(object):
- def __init__(self,
- cfg,
- device,
- num_classes=80):
- self.cfg = cfg
- self.device = device
- self.num_classes = num_classes
- # loss weight
- self.loss_obj_weight = cfg['loss_obj_weight']
- self.loss_cls_weight = cfg['loss_cls_weight']
- self.loss_box_weight = cfg['loss_box_weight']
- # matcher
- matcher_config = cfg['matcher']
- self.matcher = TaskAlignedAssigner(
- topk=matcher_config['topk'],
- num_classes=num_classes,
- alpha=matcher_config['alpha'],
- beta=matcher_config['beta']
- )
- def loss_objectness(self, pred_obj, gt_obj):
- loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
- return loss_obj
-
- def loss_classes(self, pred_cls, gt_label):
- loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
- return loss_cls
- def loss_bboxes(self, pred_box, gt_box):
- # regression loss
- ious = get_ious(pred_box,
- gt_box,
- box_mode="xyxy",
- iou_type='giou')
- loss_box = 1.0 - ious
- return loss_box
- def __call__(self, outputs, targets):
- """
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_regs']: List(Tensor) [B, M, 4*(reg_max+1)]
- outputs['pred_boxs']: List(Tensor) [B, M, 4]
- outputs['anchors']: List(Tensor) [M, 2]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- outputs['stride_tensor']: List(Tensor) [M, 1]
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- anchors = torch.cat(outputs['anchors'], dim=0)
- num_anchors = anchors.shape[0]
- # preds: [B, M, C]
- obj_preds = torch.cat(outputs['pred_obj'], dim=1)
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
-
- # label assignment
- gt_label_targets = []
- gt_score_targets = []
- gt_bbox_targets = []
- fg_masks = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
- tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
- # check target
- if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
- # There is no valid gt
- fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
- gt_label = cls_preds.new_zeros((1, num_anchors,)) #[1, M,]
- gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
- gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
- else:
- tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
- tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
- (
- gt_label, #[1, M]
- gt_box, #[1, M, 4]
- gt_score, #[1, M, C]
- fg_mask, #[1, M,]
- _
- ) = self.matcher(
- pd_scores = torch.sqrt(obj_preds[batch_idx:batch_idx+1].sigmoid() * \
- cls_preds[batch_idx:batch_idx+1].sigmoid()).detach(),
- pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
- anc_points = anchors,
- gt_labels = tgt_labels,
- gt_bboxes = tgt_boxs
- )
- gt_label_targets.append(gt_label)
- gt_score_targets.append(gt_score)
- gt_bbox_targets.append(gt_box)
- fg_masks.append(fg_mask)
- # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
- fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
- gt_label_targets = torch.cat(gt_label_targets, 0).view(-1) # [BM,]
- gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
- gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
- obj_targets = fg_masks.unsqueeze(-1) # [M, 1]
- cls_targets = gt_score_targets[fg_masks] # [Mp, C]
- box_targets = gt_bbox_targets[fg_masks] # [Mp, 4]
- num_fgs = fg_masks.sum()
-
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0)
- # obj loss
- loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
- loss_obj = loss_obj.sum() / num_fgs
-
- # cls loss
- cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
- loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
- loss_cls = loss_cls.sum() / num_fgs
- # regression loss
- box_preds_pos = box_preds.view(-1, 4)[fg_masks]
- loss_box = self.loss_bboxes(box_preds_pos, box_targets)
- loss_box = loss_box.sum() / num_fgs
- # total loss
- losses = self.loss_obj_weight * loss_obj + \
- self.loss_cls_weight * loss_cls + \
- self.loss_box_weight * loss_box
- loss_dict = dict(
- loss_obj = loss_obj,
- loss_cls = loss_cls,
- loss_box = loss_box,
- losses = losses
- )
- return loss_dict
-
- def build_criterion(cfg, device, num_classes):
- criterion = Criterion(
- cfg=cfg,
- device=device,
- num_classes=num_classes
- )
- return criterion
- if __name__ == "__main__":
- pass
|