loss.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. import torch
  2. import torch.nn.functional as F
  3. from .matcher import TaskAlignedAssigner
  4. from utils.box_ops import get_ious
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. class Criterion(object):
  7. def __init__(self,
  8. cfg,
  9. device,
  10. num_classes=80):
  11. self.cfg = cfg
  12. self.device = device
  13. self.num_classes = num_classes
  14. # loss weight
  15. self.loss_obj_weight = cfg['loss_obj_weight']
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. # matcher
  19. matcher_config = cfg['matcher']
  20. self.matcher = TaskAlignedAssigner(
  21. topk=matcher_config['topk'],
  22. num_classes=num_classes,
  23. alpha=matcher_config['alpha'],
  24. beta=matcher_config['beta']
  25. )
  26. def loss_objectness(self, pred_obj, gt_obj):
  27. loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
  28. return loss_obj
  29. def loss_classes(self, pred_cls, gt_label):
  30. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
  31. return loss_cls
  32. def loss_bboxes(self, pred_box, gt_box):
  33. # regression loss
  34. ious = get_ious(pred_box,
  35. gt_box,
  36. box_mode="xyxy",
  37. iou_type='giou')
  38. loss_box = 1.0 - ious
  39. return loss_box
  40. def __call__(self, outputs, targets):
  41. """
  42. outputs['pred_cls']: List(Tensor) [B, M, C]
  43. outputs['pred_regs']: List(Tensor) [B, M, 4*(reg_max+1)]
  44. outputs['pred_boxs']: List(Tensor) [B, M, 4]
  45. outputs['anchors']: List(Tensor) [M, 2]
  46. outputs['strides']: List(Int) [8, 16, 32] output stride
  47. outputs['stride_tensor']: List(Tensor) [M, 1]
  48. targets: (List) [dict{'boxes': [...],
  49. 'labels': [...],
  50. 'orig_size': ...}, ...]
  51. """
  52. bs = outputs['pred_cls'][0].shape[0]
  53. device = outputs['pred_cls'][0].device
  54. anchors = torch.cat(outputs['anchors'], dim=0)
  55. num_anchors = anchors.shape[0]
  56. # preds: [B, M, C]
  57. obj_preds = torch.cat(outputs['pred_obj'], dim=1)
  58. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  59. box_preds = torch.cat(outputs['pred_box'], dim=1)
  60. # label assignment
  61. gt_label_targets = []
  62. gt_score_targets = []
  63. gt_bbox_targets = []
  64. fg_masks = []
  65. for batch_idx in range(bs):
  66. tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
  67. tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
  68. # check target
  69. if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
  70. # There is no valid gt
  71. fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
  72. gt_label = cls_preds.new_zeros((1, num_anchors,)) #[1, M,]
  73. gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
  74. gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
  75. else:
  76. tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
  77. tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
  78. (
  79. gt_label, #[1, M]
  80. gt_box, #[1, M, 4]
  81. gt_score, #[1, M, C]
  82. fg_mask, #[1, M,]
  83. _
  84. ) = self.matcher(
  85. pd_scores = torch.sqrt(obj_preds[batch_idx:batch_idx+1].sigmoid() * \
  86. cls_preds[batch_idx:batch_idx+1].sigmoid()).detach(),
  87. pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
  88. anc_points = anchors,
  89. gt_labels = tgt_labels,
  90. gt_bboxes = tgt_boxs
  91. )
  92. gt_label_targets.append(gt_label)
  93. gt_score_targets.append(gt_score)
  94. gt_bbox_targets.append(gt_box)
  95. fg_masks.append(fg_mask)
  96. # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
  97. fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
  98. gt_label_targets = torch.cat(gt_label_targets, 0).view(-1) # [BM,]
  99. gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
  100. gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
  101. obj_targets = fg_masks.unsqueeze(-1) # [M, 1]
  102. cls_targets = gt_score_targets[fg_masks] # [Mp, C]
  103. box_targets = gt_bbox_targets[fg_masks] # [Mp, 4]
  104. num_fgs = fg_masks.sum()
  105. if is_dist_avail_and_initialized():
  106. torch.distributed.all_reduce(num_fgs)
  107. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  108. # obj loss
  109. loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
  110. loss_obj = loss_obj.sum() / num_fgs
  111. # cls loss
  112. cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
  113. loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
  114. loss_cls = loss_cls.sum() / num_fgs
  115. # regression loss
  116. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  117. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  118. loss_box = loss_box.sum() / num_fgs
  119. # total loss
  120. losses = self.loss_obj_weight * loss_obj + \
  121. self.loss_cls_weight * loss_cls + \
  122. self.loss_box_weight * loss_box
  123. loss_dict = dict(
  124. loss_obj = loss_obj,
  125. loss_cls = loss_cls,
  126. loss_box = loss_box,
  127. losses = losses
  128. )
  129. return loss_dict
  130. def build_criterion(cfg, device, num_classes):
  131. criterion = Criterion(
  132. cfg=cfg,
  133. device=device,
  134. num_classes=num_classes
  135. )
  136. return criterion
  137. if __name__ == "__main__":
  138. pass